河床堆積物の化学分析に基づく地球化学図作成の今後の展望[#] - 地球化学図作成のための準備と分析方法を中心に -

青	木	かおり*	新	藤	智	子*
楠	野	葉瑠香*	福	岡	孝	昭*

キーワード:地球化学図、河床堆積物、荒川

1. はじめに

自然環境から得られる情報を図化したものとして、植 物の種類分布を示す植生図、基盤岩の種類の分布を示す 地質図、高低差や距離を示す地形図などがあるが、それ らに加えて地表面の元素分布を表す図として地球化学図 がある。一般に地球の元素の分布は一様ではなく、多く は研究対象地域の表層に現れている地質によって変化す る。すなわち、元素の分布が分かることで、その地域に 分布する鉱物や地質を知る手がかりとなりうる。水が流 れている河川の河床堆積物を採取し、化学分析すること によって流域の地球化学図を作成する試みは1960年代に 英国地質調查所 (BGS: British Geological Survey) の Plant によってはじめられ、現在に至るまでその手 法は改良されながら各国で取り組まれるようになった。 英国では現在も国の基盤プロジェクト (G-BASE: baseline geochemical mapping of Great Britain and Northern Ireland) として取り組まれている。G-BASE についてレビューをした Johnson et al. (2005) による と、当初は地球化学図の作成は資源鉱物の探査、すなわ ち探鉱を目的としてマグネシウム、タングステン、ウラ ンといった金属元素、金や白金族元素といった貴金属元 素の探査に重点を置いていた。その後、自然状態の地表 面の元素分布は、人為の影響によって環境の変化が引き 起こされたか否かを評価する環境アセスメントのための 基礎資料として注目されるようになり、分析の対象とす る試料も河床堆積物から土壌や河川水にまで拡大されて 調査が続けられている (Breward et al., 2007)。1980年 代には欧米諸国において全国土をカバーする地球化学図 が作成され、1990年代半ばからは BGS が主導する形で UNESCO (Darnley et al., 1995) や FOREGS (Forum of European Geological Survey; Plant et al., 1997)

の国際的なプロジェクトとして地球化学図の作成が推進 されている。

日本国内では、独立行政法人産業技術総合研究所が全 国規模で作成した地球化学図を公開している (今井ほか、 2004)。ただし、国土を網羅するために100km²で1地点 を代表する形で調査が行われたことから、複雑な地域地 質を反映した化学組成の分布図を作成するためには試料 採取密度を高くする必要がある。試料採取密度を1km² で1地点を代表させた研究例としては、地質調査所(現 産業技術総合研究所)が調査した関東地方北部(上岡ほ か、1990)、名古屋大学が調査した名古屋市東部から奥 三河 (田中ほか, 1995;山本ほか, 1998)、福岡大学が 実施した福岡県内の調査(古川ほか,2004;高本ほか, 2005;伊藤ほか;2007)などがある。これらの研究では 地質図と元素分布図とを対比させながら、より詳細な考 察が可能となっている。立正大学においては、2000年よ り学部3年生の実習と修士課程1年生の実習を兼ねた字 宙地球化学研究室のプロジェクトとして、キャンパスが 立地している熊谷市を流れる荒川の上流域奥秩父で試料 採取密度を1km²で1地点を代表させた詳細な地球化学 図を作成している。試料採取については田中ほか (1995)を参考にして若干の工夫を加え、化学分析には 4種類の方法を採用している。2004年からは立正大学オー プンリサーチセンター事業の一環として研究が続けられ (福岡ほか, 2005; 2006; 2007; 2008)、2000年~2008年 の9年間に関わった延べ人数は100人を越える。

地球化学図作成においては40年の歴史を持つ英国では、 7月~9月の夏季休暇中に地球科学・環境科学を専攻す る学生を募集して試料採取キャンペーンが繰り広げられ、 ひと夏に2000地点以上で試料採取が行われている (Johnson *et al.*, 2005)。国家事業として行われている 英国と日本国内で個々に取り組んでいる大学では、対象

^{*} 立正大学大学院地球環境科学研究科

^{*} 平成17~20年度立正大学大学院地球環境科学研究科オープンリサーチセンター業績

地域の広さや開催規模に違いはあるものの、地球科学や 環境科学を専攻する大学の学生や大学院生を動員して行 われている点では共通している。いずれの場合において も、地球化学図の作成はチームで行う野外調査の方法を 学び、化学分析の経験を積むことができるので、これか ら卒業研究や大学院での研究を始めようとする学生にとっ てはトレーニングを兼ねた非常に良いオリエンテーショ ンとなっている。試料採取時にリーダー役を務められる 経験者が増えれば、試料採取のための班を多く作り、調 査対象地域を拡大して調査を継続させることも可能であ る。また、立正大学では2008年8月3日~8日に地球環 境科学部で開催した「地球環境塾」のように、中学校・ 高等学校で理科を教える教員を対象とした研修の一部と して、野外調査から化学分析までの一連の作業を体験で きる題材として取り入れた。すべての分析を完了するた めには、日程の追加や作業手順等の工夫をする必要があ るが、大学に在学する学生以外を対象とした地学分野と 化学分野の研修題材としても利用できるであろう。

地球化学図の作成は長年にわたるプロジェクトである ことから、草創期から連続して参加している参加者は教 員を除くとごく限られる。試料の採取方法や分析手順の ばらつきを最小限に抑えるために、手法の改良が行われ た場合には、その都度変更点を明記してマニュアルを改 訂するべきであろう (例えば Johnson *et al.*, 2003)。本 論は立正大学で実施されている地球化学図作成に必要な 試料採取の準備と実施方法、および化学分析のための試 料の処理と分析方法を学習するための手引きとしてまと められたものであり、最後に地球化学図の今後の課題と 展望について考察した。

2. 試料採取の準備と実施方法

本研究室では、夏期休暇中に3泊4日の日程で試料採 取のための野外調査実習を行っている。全体の参加者お よびリーダーの人数によって班の数は変動するが、自動 車によって移動が可能な地域では、3~5班程度で分担 して60~70地点で試料採取が行われる。自動車での移動

図1 地球化学図作成における全体のながれ

器材	仕様	個 / 班
ポリバケツ	30.3×30.2cmH 容量15L	2
深型スコップ	穴開き	2
ふるい	180 µ m	2
水差し	約 12cm×13cm 容量1L	2
コーヒードリッパー	-	2
コーヒーフィルター	-	採取地点の約2倍
茶封筒	長形3号	採取地点数
ユニパック	H-4号 240×170mm	採取地点数
タイマー	-	1
GPS	Geko201 GARMIN 型	1
カルテ	図3を参照のこと	採取地点数
画板	-	1
地形図	25,000分の 1	班員分
コンパス	-	班員分
カメラ	-	1
背負子	-	1
長靴・雨具	-	各自1

表1 試料採取で使用する器材一覧

が難しい地域では、同様の日程で廻れる地点は20地点程 度である。基本的に経験者1名をリーダーとして配して、 3~4人が1組となって行動する。地球化学図を作成す る手順を図1に示し、表1に試料採取に必要な器材をま とめた。本章では事前準備と試料採取方法について以下 に詳述する。

2.1. 試料採取のための事前準備

野外調査に出る前に、参加者は地形図と地質図の読図 方法を学習した上で、採取地点の選定を行う。参加者は、 地形図から陸上の地形・水系・道路・鉄道・集落・建造 物・植生・基準点・地名・境界などの詳細な情報を得ら れることを理解した上で等高線から読み取った尾根線を 地形図上に書き込み、尾根に囲まれた領域(集水域)か ら採取地点を選定する。尾根に囲まれた地域の表層の物 質は、雨水等に侵食され各支流の下流端に運ばれる。た とえば、図2に示した地点aは尾根で囲まれた集水域A の組成を代表する。本研究の試料の採取地点は、地形図 上の尾根に囲まれた約1km²の流域から1地点を選ぶ。 支流では増水時に本流の水が支流に逆流することを考え、 本流と交わる100m 程度上流の地点を選択する (図2; 地点a、b、d、e)。また、斜面の崩落や護岸工事等 で水が枯れて河床堆積物の採取が困難な集水域があるの で、本流でも5km おきに採取する (図2;地点c、f)。 さらに、地質図と照らし合わせ、化学組成に影響する可 能性のある地質が観察される集水域では1km²未満の範 囲であっても採取する。本研究室で調査している奥秩父 では旧秩父鉱山とその周辺地域を除くと主に砂岩・泥岩 からなるが、石灰岩の採石場や貫入した火成岩が露出し ている地点の近くでは約1km²よりも細かい範囲に試料 採取地点を選定している。

深い谷に入った際には GPS では衛星からの情報を取得 できないことが多いため、自分の現在地を確認すること が必要となる。そこで現地調査に出かける前に登山のた めの技術研修を行う。まず、予め調査対象地域の地形図 に磁北線を記入して、コンパスの使用方法を学び、目標 とする谷や尾根の方位を正しく認識する方法を実習する。

さらに、礫の種類を判別するために、基本的な岩石の 種類とその特徴を学習する必要がある。本研究では河床 堆積物を80メッシュ(<180µm)のふるいに通し、 180µm以下の粒子を試料として持ち帰り化学分析を行 う。180µm以上の砂礫は化学分析の対象とはしないが、 化学組成と地質との対応を議論する際の重要な情報であ ることから、岩石の種類や大きさ、色について詳細に記 述する必要がある。荒川流域に分布している岩石につい ては、地学団体研究会の「川原の石のしらべ方 荒川の 石」(「荒川の石」編集委員会,1999)と、荒川で採取さ れた礫の標本を参考にして学習する。

試料採取地点で観察結果を記録するための統一した規 格の用紙(図3:以下カルテと呼ぶ)を準備する。観察 結果を記録する表現力には個人差があることから、見落 としを防ぐために、カルテには予め必要な調査項目を簡 潔に表示している。また、車道から採取地点までの経路 や、河岸の様子、試料の化学組成に変化を与えそうな民 家や工場の存在、廃棄物といった特殊な状況を記録する 欄を設けている。

2.2.試料採取の手順

採取地点に到着したら、図4に示した流れで試料を採 取し、周辺状況をカルテに記入する。以下に試料採取の 手順を詳述する。

コンパスと地形図を用いて目標地点に到達しているこ とを確認後、GPS を起動する。GPS による位置情報取 得は、衛星からの信号を受信するために木の葉等の障害 物が上空に少なく安定した場所で行い、緯度・経度・高 度をカルテに記入する。周辺の様子と河床堆積物の写真 を撮影し、カルテの各項目に観察した事柄を記入する。 写真撮影ではスケールを統一するために、例えば、河床 堆積物の写真は深型スコップやふるいと一緒に撮影する。

試料の採取方法をフローチャートに示した(図5)。
図中の番号は以下に記す採取方法の手順 ~ に対応している。採取に使用する道具類はあらかじめ河川水で良く洗浄する。

ふるいの下にポリバケツを置き、深型スコップですくっ た河床堆積物をふるいの上にのせて、水差しで水をか

				prest	N. CKUM					
地形図	中津峡	仮サンプルNo.	34	サンプルNo.						
採取日(天候)	< t y 2	8/08/16	採取時刻	13:42						
アプローチ方法	キャンク・5帰 15 勇 民家(キャンプ5帰の	輝し、も:から の月ほに流れて	と流入 この不も登。 (40~	(2. .(86))						
採取場の様子	左岸 は 杉の 石岸は林、 つけにかないの	林藤 にない	1.1.5							
礫径(cm)	最大 ≠mm (00 ₀₀ 平均 5~6 cm	礫種	砂岩. 泥岩	周辺の地質	泥岩. (塘)					
写真:採取付近	くるの		写真:河床	-30	Ketta X2					
GPSデータ	高度 496 m	北緯 35 59	05.1" B	東経 ^{/38'54'30.3}	(GAT DA)					
特記・探知地をエリたで、クリもしていろんたちかいしな. 「魚とり、 ・ もりつゆが下法になる										

2008年度 セミナー I 調査カルテ メンバー名 飲用、稿 要 肉

図3 2008年度版試料採取カルテの例

けながらふるいにかける。十分に水をかけ流したら、 ふるいの上に残った砂礫を捨て、新たにスコップで堆 積物をのせて同じように水でかけ流す。

ポリバケツの中にある程度河床堆積物がたまったら水 を足してバケツを満水にし、手で均一になるように底 からかき混ぜる。安定した場所に静置し、5分後上澄

みを流す。このとき、静置時間を統一するためにタイ マーを使用する。

ポリバケツに残った沈降物を水差しで水をかけ流しな がらふるいにかけ、の作業を繰り返す。

ポリバケツに残った全ての沈降物を水差しを使ってコー ヒーフィルター上に移す。

フィルターに残ったものを試料とし、採取地点の番号 を記入した茶封筒、ユニパックの順に封入する。

バケツを満水にし、かき混ぜて5分間静置する作業 ()と沈降物を全てコーヒーフィルター上に移す作業 ()は、どの採取地点でも同じ粒度の試料にするため である。バケツに採取した試料が多かった場合は、複数 のフィルターに分けて回収し、室内作業時に均一になる よう混合して一つにまとめてから、分析用の試料を取り 分ける。

3. 分析方法

3.1.本研究で用いる化学分析法

採取した試料の化学組成は、XRF (X-ray fluorescence analysis; 蛍光エックス線分析)、LA-ICP-MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry; レーザーアプレーション誘導結合プラ ズマ質量分析)、INAA (Instrumental neutron activation analysis; 機器中性子放射化分析)、 PGA (Prompt -ray analysis; 即発ガンマ線分析)の4種 類の分析方法を用いて、1試料当たり48元素の濃度を求 めることを目標とする(図6)。いずれも、多試料・多 元素を効率的に分析が可能な手法である。Si、Fe、AI、 Ca、K等の主成分元素を中心に21元素の分析は蛍光X

図6 地球化学図に用いる元素と分析手法

線分析 (XRF) で行い、 B の分析は即発 線分析 (PGA) で行う。LA-ICP-MS では微量元素の中でも希 土類元素を中心に23元素を分析する。XRF や LA-ICP-MS で精度の良い分析値を得難い元素を含む15元素の分 析には INAA を適用する。INAA では揮発性元素であ る Hg を分析するため自然乾燥した試料を用いる。以下、 試料の前処理方法と注意点について述べ、分析方法ごと に使用する機器と分析条件、さらに分析値の計算方法に ついての概要をまとめる。分析結果の定量値化、分析確 度や装置のドリフトをモニターするために用いる標準試 料を表 2 にまとめた。

各分析方法の原理や機器の仕組みおよび定量計算の詳 細については、専門の書籍を読み学習すると良い。LA-ICP-MS については新藤ほか(2009,本号)、Montaser (2000)、放射能と放射線の基礎は海老原(2005)、古川 (1994)、INAA の分析・解析技術は福岡(1993)、伊藤 ほか(2004)、Ge 検出器の原理・調整法については Knoll(1991)等が参考になる。 採取した試料は、現地から持ち帰ると直ちに袋から出 し、数日かけて室温で自然乾燥させる。乾燥しやすいよ うにコーヒーフィルター内の試料をもみほぐし、ポリエ チレンフィルムでコーティングされた大きなろ紙上に置 く。自然乾燥が完了した試料は、二酸化炭素ガスを噴き つけ塵を除いたスチロール瓶に保管する。1地点で採取 された試料が複数のコーヒーフィルターに分けられてい る場合は、自然乾燥後にひとまとめにしてスチロール瓶

図7 分析試料前処理のながれ

3.2.分析試料の前処理

LA/ICP-MS

分析に至るまでの試料処理の過程を図7に示した。

						-			· · · · · ·								-						
日的元麦	Rb	Cs	Sr	Ba	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Zr	Hf	Nb	Та
口的儿茶	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm								
* 1 JA- 3	36.7	2.08	287	323	21.2	9.33	22.8	2.4	12.3	3.05	0.82	2.96	0.52	3.01	0.51	1.57	0.28	2.16	0.32	118	3.42	3.41	0.27
*1JB-1a	39.2	1.31	442	504	24	37.6	65.9	7.3	26	5.07	1.46	4.67	0.69	3.99	0.71	2.18	0.33	2.1	0.33	144	3.41	26.9	1.93
* 1 JB- 2	7.37	0.85	178	222	24.9	2.35	6.76	1.01	6.63	2.31	0.86	3.28	0.6	3.73	0.75	2.6	0.41	2.62	0.4	51.2	1.49	1.58	0.13
*1 JR-1	257	20.8	29.1	50.3	45.1	19.7	47.2	5.58	23.3	6.03	0.3	5.06	1.01	5.69	1.11	3.61	0.67	4.55	0.71	99.9	4.51	15.2	1.86
*1 JR- 2	303	25	8.11	39.5	51.1	16.3	38.8	4.75	20.4	5.63	0.14	5.83	1.1	6.63	1.39	4.36	0.74	5.33	0.88	96.3	5.14	18.7	2.29

表2 XRF、LA-ICP-MS、INAA、PGA で用いた標準試料と各元素の公表値

日的元表	SiO ₂	TiO_2	AI_2O_3	Fe_2O_3	MnO	MgO	CaO	Na ₂ O	K_2O	P_2O_5	Rb	Ва	Nb	Sr	Zr	Y	Cr	Ni	V	Pb	Cu
日的兀糸	%	%	%	%	%	%	%	%	%	%	ppm	ppm	ppm	ppm							
* 1 JA- 3	62.27	0.7	15.56	1.15	0.104	3.72	6.24	3.19	1.41	0.116	36.7	323	3.41	287	118	21.2	66.2	32.2	169	7.7	43.4
*1JB-1a	52.41	1.28	14.45	2.55	0.148	7.83	9.31	2.73	1.4	0.26	39.2	504	26.9	442	144	24	392	139	205	6.76	56.7
*1 JB- 2	53.25	1.19	14.64	3.33	0.218	4.62	9.82	2.04	0.42	0.101	7.37	222	1.58	178	51.2	24.9	28.1	16.6	575	5.36	225
*1JR-1	75.45	0.11	12.83	0.35	0.099	0.12	0.67	4.02	4.41	0.021	257	50.3	15.2	29.1	99.9	45.1	2.83	1.67	7	19.3	2.68
*1 JR- 2	75.69	0.07	12.72	0.27	0.112	0.04	0.5	3.99	4.45	0.012	303	39.5	18.7	8.11	96.3	51.1	3.1	1.99	3	21.5	1.36
分析法	XRF																				

日的元表	Cs	Sc	La	Sm	Eu	Yb	Lu	Th	Hf	Cr	As	Sb	Co	١r	Au	Hg	В	Si
日凹儿糸	ppm	ppb	ppb	ppb	ppm	%												
* 1 JA- 3	2.08	22	9.33	3.05	0.82	2.16	0.32	3.25	3.42	66.2	4.68	0.32	21.1	$n.d^{\star \scriptscriptstyle 1}$	0.95	1.9	24.8	29.11
*1JB-1a	1.31	27.9	37.6	5.07	1.46	2.1	0.33	9.03	3.41	392	2.3	0.25	38.6	$n.d^{\star}$	0.71	6.65	7.88	24.5
* 1 JB- 2	0.85	53.5	2.35	2.31	0.86	2.62	0.4	0.35	1.49	28.1	2.87	0.25	38	$n.d^{\star}{}^{\scriptscriptstyle 1}$	5.64	4.78	30.2	24.89
* 1 JR-1	20.8	5.07	19.7	6.03	0.3	4.55	0.71	26.7	4.51	2.83	16.3	1.19	0.83	$n.d^{\star}$	0.25	3.4	117	35.27
*1 JR- 2	25	5.59	16.3	5.63	0.14	5.33	0.88	31.4	5.14	3.1	19.2	1.51	0.46	n.d*1	0.13	0.9	145	35.38
Allende	-	-	-	-	-	-	-	-	-	-	-	-	-	780	140 * 2	12.1*3	-	-
分析法	INAA	////	////	////	////	////	////	////		////	////	////	////	////		////	, PGA	

太字で示した標準試料の公表値を基準に、未知試料中の目的元素濃度を計算する。

*1 本研究では JB-1a、JR-2中の Au と Hg は検出不可であるため、n.d とした。公表値は Imai *et al.* (1995) に示

されている。

分析法

*² Allende 中 Ir、Au 濃度は J. C. Laul (私信) による。

*³ Allende 中 Hg 濃度は標準溶液を標準試料として INAA で分析し、石本(私信)による。

に保管する。

試料は水をかけ流しながら回収したために、フィルター 内で比重によって分級している。スチロール瓶中でサジ を使って均質になるよう良く混ぜ合わせた試料を20cm 四方ほどの大きな紙の上に広げ、一つの山にする。その 試料の山を4つに分割し、そのうち4分の2をひとつの 山にして、再度4分割する作業を数回繰り返す(四分法)。 化学分析に使用する試料として5g以上を取り分け、ア ルミナ製乳鉢ですりつぶして新しいスチロール瓶に保管 する。残りの試料は元のスチロール瓶に戻して保管する。

INAA に用いる試料はここで0.1~0.2gを取り分ける。 XRF と LA-ICP-MS で分析する試料は、高温で加熱し て水、有機物等を分解揮発させる(強熱減量)。加熱後 の試料は合計2.0g(XRF と LA-ICP-MS に1.3g、PGA に0.7g)必要であることから、減量することを見込んで 約5g程度の試料を加熱する。強熱減量は2段階で行う。 まず、恒量させた石英るつぼに試料を入れ、るつぼ込み の重量を記録する。110 に設定した乾燥機で乾燥させ て水分を蒸発させる。この試料を900 に設定した電気 炉で1時間加熱する。このとき、有機物や炭酸塩が二酸 化炭素等酸化物に分解され揮発する。試料が恒量に達し たらスチロール瓶に入れてデシケーター内で保管する。

INAA では自然乾燥した試料、他の3分析法では 900 加熱乾燥した試料を使うため、揮発した成分の量 によって試料重量が変わる。そのため、分析値の計算を 行う際には、上記の作業で記録した自然乾燥の重量と 900 加熱乾燥後の重量の差から揮発成分の含有率を計 算して、重量の補正を行う必要がある。

3.3.XRF による分析方法

試料にエックス線を照射し原子を励起させると、原子 の核外軌道電子が弾き出される。このときにできた核外 軌道電子の空位に外側の軌道の電子が遷移すると蛍光エッ クス線(特性エックス線)が放出される。蛍光エックス 線は元素に固有なエネルギーを持ち、その強度は濃度に 比例することから、元素の同定および定量が可能である。

試料はガラスビードとよばれるガラス質の薄い円盤にして分析する。900 加熱乾燥した試料約1.3gを精秤し、
110 で乾燥させた四ホウ酸リチウムを試料の2倍(約2.6g)加えてアルミナの乳鉢で均一に混ぜ合わせる。これを白金るつぼに移し、東京科学社製の高周波溶融装置(ビードサンプラ)TK-4100を用いて試料を最高1200で加熱融解してガラスビードを作製する。揮発性成分が 十分に抜けていない試料でビードを作製すると、融解時 に発泡がおこり、ビード表面に凹凸ができ、XRF 分析 値の確度が悪くなるので900 加熱乾燥が必要である (小林, 2001)。ガラスビードの分析には富士常葉大学に 設置されている理学電機工業社の波長分散型蛍光X線分 析装置 RIX2100に Rh 管球を装着して使用し、電圧50 kV、電流値50mAの条件で1試料につき約1時間測定 する。検量線の作成には吉田・高橋 (1997) に掲載され ている壱岐火山岩試料を使用しており、その他の詳しい 分析条件や分析確度、分析値の再現性等は佐野(2002) に詳しく記載されている。分析する元素は、主成分10元 素 (SiO₂、TiO₂、Al₂O₃、FeO* (全鉄を FeO とした値)、 MnO、MgO、CaO、Na₂O、K₂O、P₂O₅) および微量元 素10元素(Rb、Ba、Nb、Sr、Zr、Y、Cr、Ni、V、Cu (2000年~2004年) または Pb (2005年~2008年)) であ る。なお、XRF で定量されたYとSiの分析値は、それ ぞれ LA-ICP-MS と PGA で内標準元素として補正計算 に使用する。分析結果の正確度は独立行政法人産業技術 総合研究所が販売している岩石標準試料 JB-1a、JA-3、 JR-2の分析値と推奨値(表2)との比較により検討す る。

3. 4. LA-ICP-MS による分析方法

ICP-MS 分析は、試料を大気圧下で Ar プラズマに通 してイオン化し、そのイオンを質量と電荷の比により選 別してイオンーつーつを検出する質量分析法である。多 数の微量元素を同時にしかも短時間で高精度分析するこ とができる。立正大学では質量分離部が四重極型の ICP-MS 装置 (SII 社製 SPQ9000) を使用し、この分析 装置に試料を導入するために LA (Laser ablation) 装 置 (CETAC 社製 Nd-YAG レーザー (波長266nm) 装 置 LSX-200) を使用している。LA 装置は固体試料にレー ザーを照射して直接エアロゾル化して、アルゴンガスに 乗せてプラズマの中に送り込んでいる。この方法は試料 を溶解する必要がないので、試料への汚染を極力少なく できる。また、溶液法では水分子等と結合して複雑な分 子イオンが生じることにより補正計算が必要となるが、 LA 法ではその補正をする必要がほとんどない。本研究 では、XRF 用に作製したガラスビードを LA-ICP-MS 分析にも使用している。これは、レーザーでエアロゾル 化するのに適している均質なガラス試料であることに加 え、次に述べる分析値の定量化および内標準補正が容易 であることがその理由である。分析条件や手法について は、新藤ほか(2009,本号)を参考にすると良い。

ICP-MS で得られる分析結果は、単位時間当たりに検

出装置でカウントされたイオンの個数、すなわち強度比 のみが得られる。そこで、各元素の強度を濃度 (ppm) として示すために、独立行政法人産業技術総合研究所の 岩石標準試料 JA-3(表2)を分析して得られた強度と 公表値を、未知試料の強度と比較して濃度を算出する。 さらに、分析装置のドリフトによる分析感度の変動や、 試料がレーザーでエアロゾル化される効率が化学組成に よって異なるために生じる感度の変化 (マトリックス効 果)を補正する必要がある。本研究ではガラスビード試 料は XRF で定量された Y を内標準元素として用いて補 正している。LA-ICP-MS で分析して得られたYの濃度 と、XRF で求められた同じガラスビードのYの濃度の 比から、ICP-MS で得られている感度の増減率を求めて、 同時に分析されたその他の元素の濃度を補正する。最新 の分析技術の情報交換のために、毎年東京工業大学理学 部地球惑星科学科平田研究室で開かれる ICP-MS 技術 セミナー (主に LA-ICP-MS) に参加し、本学の LA-ICP-MS 技術向上に努めている。学生の研究意欲を刺激 する面でも効果的である。

3. 5. INAA による分析方法

INAAとは、原子炉で試料に熱中性子を照射し、試 料中の非放射性核種を放射性核種に変え、放出される 線の強度を測定し、同時に中性子照射した濃度のわかっ ている試料(多くの場合岩石標準試料)の強度と比較し て目的元素の含有量を求める方法である。INAAは、 生成した放射性核種から放出される線のエネルギーが 核種によって異なるので、同時に多元素の分析が可能で ある。

自然乾燥後の試料約0.2gを洗浄したポリエチレン製のバイアル (0.2ml 容量、キャップ付、 Bel-Art products 製) に入れて精秤し、バイアルのフタと本体をハンダゴテで融封する。検出器と放射性物質の距離が

線強度の検出に影響するため、 線強度測定時の試料 位置を検出器から一定距離に保てるように、バイアル側 面が水平になるよう、融封時に生じた凸部を削り落とす。 ポリエチレン製の袋にバイアルを入れ、ヒートシーラー を用いて融封する。

試料は日本原子力開発機構原子力科学研究所へ輸送し、 原子炉で試料に同時に熱中性子を照射する。使用原子炉 と照射設備は、原子炉の運転状況により原子炉施設と打 ち合わせて決定する。利用する設備や原子炉の出力等に 応じて、照射後に測定する線強度がほぼ同じになるよ うに、照射時間と試料数を調整する。照射後の試料は青 山学院大学理工学部アイソトープ実験室内のドラフト内 で照射時に試料を包装していたポリエチレン袋を、新し いポリエチレン袋に入れ替え、融封する。線強度の測 定には同実験室に設置されている Ge 検出器を利用した。

	安定	核種	生	成核種	線エネルギー	旅客となる技種と 娘エネルギー (レa)()
	核種名	存在比	核種名	半減期	(keV)	別苦となる核種と 緑エネルキー (Kev)
	¹⁵² Sm	0.267	¹⁵³ Sm	46.8 時間	<u>103.2</u>	²³⁹ U (²³⁹ Np) : 103.7, 106.5
	176Lu	0.0259	177Lu	6.74日	208.3	²³⁹ Np: 209.8
	²³² Th	1.00	²³³ Pa	27.0 日	<u>311.9</u>	¹⁹² lr: 308.5; ¹⁶⁹ Yb: 307.7
	⁵⁰Cr	0.0431	⁵¹Cr	27.8 日	<u>320.1</u>	¹⁹² Ir: 316.5; ¹⁴⁷ Nd: 319.4; ¹⁷⁷ Lu: 321.3
	¹³⁹ La	0.999	¹⁴⁰ La	40.2 時間	328.8, 487, <u>1596.6</u>	⁵⁹ Fe: 335.0; ¹⁹² Ir: 489.1
測定 1	¹⁷⁴ Yb	0.3183	¹⁷⁵ Yb	4.19日	<u>396.1</u>	²³³ Th (²³³ Pa) : 398.7
(照射後約5日)	¹⁹⁷ Au	1.00	¹⁹⁸ Au	2.7 日	<u>411.8</u>	¹⁵² Eu: 411.1
	¹⁸¹ Hf	0.352	¹⁸¹ Hf	42.4 日	482.2	¹⁹² lr: 484.7; ¹⁸¹ Hf: 475.9
	⁷⁵ As	1.00	⁷⁶ As	26.4 時間	559.1, <u>657.1</u>	¹²² Sb:564.4
	¹³³ Cs	1.00	¹³⁴ Cs	2.06年	<u>797.0</u>	¹³⁴ Cs: 802.0
	⁴⁵ Sc	1.00	⁴⁶ Sc	83.9 日	<u>889.3, 1120.5</u>	¹⁶⁰ Tb:879.4; ^{110m} Ag:884.7; ¹⁵² Eu:1112.1; ⁶⁵ Zn:1115.5
	⁵⁹ Co	1.00	⁰Co	5.26年	<u>1173.2, 1332.5</u>	¹³⁴ Cs : 1167.9 ; ¹⁶⁰ Tb : 1177.9
	¹⁵¹ Eu	0.478	¹⁵² Eu	12.7 年	121.8, <u>1408.1</u>	¹⁵⁴ Eu:123.1; ¹³¹ Ba:124.2
	²⁰² Hg	0.298	²⁰³ Hg	46.9 日	<u>279.2</u>	
	²³² Th	1.00	²³³ Pa	27.0 日	<u>311.9</u>	¹⁹² lr: 308.4; ¹⁶⁹ Yb: 307.7
	⁵⁰Cr	0.0431	⁵¹ Cr	27.8 日	<u>320.1</u>	¹⁹² Ir: 316.5; ¹⁴⁷ Nd: 319.4; ¹⁷⁷ Lu: 321.3
測定 2	¹⁹¹ lr	0.373	¹⁹² lr	74.2 日	<u>468.1</u>	
(照射後約1ヶ月)	¹⁸⁰ Hf	0.352	¹⁸¹ Hf	42.4 日	482.2	¹⁹² lr: 484.7; ¹⁸¹ Hf: 475.9
	¹³³ Cs	1.00	¹³⁴ Cs	2.06年	<u>797.0</u>	¹³⁴ Cs: 802.0
	⁴⁵ Sc	1.00	⁴⁶ Sc	83.9 日	<u>889.3, 1120.5</u>	¹⁶⁰ Tb:879.4; ^{110m} Ag:884.7; ¹⁵² Eu:1112.1; ⁶⁵ Zn:1115.5
	⁵⁹ Co	1.00	60Co	5.26年	<u>1173.2,</u> <u>1332.5</u>	¹³⁴ Cs : 1167.9 ; ¹⁶⁰ Tb : 1177.9
	¹²³ Sb	0.573	¹²⁴ Sb	60.3 日	<u>1691.1</u>	

表3 INAA で分析する元素の安定核種、生成核種および 線エネルギー

各核種の放出するいくつかの 線強度のうち、最も高いか周囲に妨害ピークが少ないピーク (太字で示した 線エ ネルギー)を用いて濃度計算を行う (福岡, 1993)。 測定は、分析する元素(生成した核種の半減期)に応じ て原子炉での中性子照射後5日前後(表3;測定1)と 1ヵ月後(表3;測定2)に分けて実施する。未知試料 の線強度を、岩石標準試料(JB-1aまたはJR-2、表 2)の線強度と比較することにより元素濃度へ換算す る。分析値の正確度は、同時に照射した複数の岩石標準 試料の分析結果と推奨値との対比で確認する。

3. 6. PGA による B の分析方法

ガラスビード試料を用いて分析する LA-ICP-MS で は、ガラスビード作製に四ホウ酸リチウムを使うことか ら、 B の定量分析ができない。そこで、 B の分析には PGA を適用する。PGA とは、試料に中性子を照射中に 放出される即発 線を測定することで、元素または同位 体を分析する方法である (米沢, 2002)。

900 で乾燥させた粉末試料は、アルミナの乳鉢で細 かくすりつぶし、約0.7g を専用の冶具を用いて、約0.4t の圧力で直径12mm、厚さ3mm程度の錠剤に成型する (佐野ほか,1998)。これをFEP (四フッ化エチレン六 フッ化プロピレン共重合樹脂、FLON INDUSTRY 社 製)袋に入れ、ヒートシーラーで融封する。中性子の照 射、即発 線の測定は日本原子力開発機構原子力科学研 究所 JRR-3M 炉 (最大熱出力3 MW)の中性子ガイド ビームホールに設備された即発 線測定設備で行う。錠 剤試料を包装した FEP 袋の余白を PTFE 製の糸で中性 子ビームが一定の位置に照射されるように固定する。中 性子の照射時間は、標準試料は60分間以上、未知試料は 試料の即発 線強度により調整する (最低20分間)。

線スペクトロメーターで得られるBの即発 線のピー クは470-485keV に観測され、特徴的な台形型を示す。 その幅は通常の 線ピークに比べて8~10倍と大きい。 このピークは環境試料や岩石試料では Na (472keV) と Ni (483keV) のピークの干渉を受ける可能性がある。 特に Na は、地質試料では普遍的に検出される主要元素 の一つであることから、Na のピークを除去する計算を 行わなくてはならない。本研究では、佐野ほか(1998) の方法に従ってBのピークを解析する。Bの濃度は、未 知試料の線強度と岩石標準試料(JB-2、表2)の強 度を対比させて算出する。さらに、中性子強度の時間変 動や、錠剤の形や大きさのわずかな差異による Bの 線 強度(幾何効率)の変動を補正するために、試料ごとに PGA で求めた Si の分析値と XRF で求めた Si の分析 値の比を用いて、Bの濃度の補正を行う(内標準補正; 佐野ほか, 1998)。PGA では試料に H₂O が数%以上含 まれていると、水素によって中性子が乱反射を受け、 線検出器の不感時間を大きくし、測定を妨害する。一般 に河床堆積物は含水量が多いので、900 加熱乾燥が必 要である。

4. 地球化学図の作成

本章では採取した地点と化学分析の結果を地球化学図 にあらわすために使用しているアプリケーションとその 利用手順をまとめる。

分析値から地球化学図を作成する場合、当初はグリッ ド方式で行ったが、2006年以来、名古屋大学で開発され た「地球化学図作図プログラム」(稲吉,2005)を使用 している。採取地点の位置情報と化学組成が入力された Excelの表計算シートをテキスト形式(*.csvまたは *.txt)で保存して、上記プログラムで読み込むと、元 素ごとに濃度分布を示すイメージファイル(地球化学図) を得ることができる。

次に、地図情報ソフトの『カシミール』に採取地点の 緯度経度を入力して、地点が示された地形図のイメージ ファイル(*.bmp)を作成する。市販のグラフィックソ フトである Adobe Photoshopを使用して カシミール で作成した採取地点を示したイメージファイル、 上記 で作図した元素ごとの地球化学図のレイヤー、 調査し た流域を囲う尾根を線で囲んだレイヤーを重ね合わせる。

のレイヤーは、尾根線の内側を完成した地球化学図と して表現するためである。分析して得られた化学組成は、 集水域を代表する値として尾根線で囲われた地域を代表 する値であることから、必要に応じて尾根線の外側の領 域を切り取る等、完成したイメージの加工を工夫する。

5. 地球化学図の今後の展開と課題

地球化学図に関わる研究の今後の展開としては、いく つかの方向性が考えられる。まず、2008年度をもって、 荒川源流についてかなり広い範囲の調査が終了した(図 8)。これまでに調査が完了した地域については、分析 値をまとめて公開する準備を進めている。さらに、調査 を完了した地域については、作成した地球化学図を基礎 資料として、例えば中津川で2006年に本工事が完了した 大滝ダム(2008年末で試験湛水中)の周辺と下流部の環 境変化をモニタリングすることは、今後の新たな課題の 一つであろう。また、これまでに分析した試料の残りが 自然乾燥された状態で保存されていることから、これら

:2000年 - 2008年度に試料採取した地点 (合計337地点)

について新たな目的をもって分析するという方法も考え られる。例えば、Asahara et al. (2006) は、名古屋大 学が地球化学図を作成するために採取した試料と調査対 象地域に露出している基盤岩の⁸⁷Sr と⁸⁸Sr を分析し、そ の同位体比を比較することで河床堆積物の起源について 論じた。その結果、地質図には表わされていない岩石 (貫入花崗岩等など)の存在を予測している。我々の荒 川上流の調査でも、高濃度の Mg と Cr が検出された地 点についてクロム苦土鉱を伴う鉱脈の存在を予測してお り (新藤ほか, 2008)、基盤岩についての詳細な地質調 査と化学分析をすることで、新たな科学的事実が明らか になる可能性がある。

一方で、今後は調査対象地域をさらに拡大するという 計画もある。拡大の対象とする地域は、秩父湖の西の甲 武信ヶ岳や雁坂峠方面もしくは南の雲取山方面へ遡る地 域と、これまでに調査した地域から下流方面が考えられ る(図8)。甲武信ヶ岳、雁坂峠および雲取山方面への 調査は自動車で移動できる範囲が限られており、登山の 経験や沢のぼりの技術が必要であることから、山岳での 活動や地質調査の経験者による調査への参加が望まれる であろう。逆に、下流方向では荒川の本流は秩父盆地に 流れ込み、荒川中流~下流域では農地、宅地、ゴルフ場 といった人工改変地や建造物が増える。都市開発が進ん だ地域では、試料の採取方法や分析する項目について工 夫する必要もあるだろう (例えば Fordyce *et al.*, 2005)。

第1章で述べたように、日本における地球化学図作成 は、複数の研究機関、大学による成果が挙げられる。立 正大学を含め、これら機関の成果は2009年度日本地球惑 星科学連合合同大会(2009年5月16~21日)地球化学セッ ション C202「地球化学図の新展開を探る:環境、資源、 研究、教育」でみることができる。新たな研究成果報告 や、会場での議論によって開かれるこれからの地球化学 図への道が期待される。また、2008年度の同位体比部会 における本研究の取り組みを紹介した講演では、採取し た試料を地球化学図以外の研究へ応用するという提案が あった。例として、河床堆積物の宇宙線生成核種含有量 から、侵食速度を求める研究がある。これまで本研究で は集水域1km²ごとに試料を採取しているため、集水域 ごとの地形・地質と侵食速度についての考察が可能であ ろう。実際に地形学研究者からの試料供給を望む声が多 数あるため、保管している河床堆積物試料を希望者に配 分することも考えている。

地球化学図の作成は、上記のように新しいアプローチ 方法や課題が生まれており、これまでに調査を終えた地 域についてもより深く探求する研究に発展させられる可 能性がある。

謝 辞

XRF の分析では富士常葉大学の XRF 分析装置を利用させ ていただきました。INAA の中性子照射では日本原子力機構原 子力科学研究所東京大学大学開放研究室のみなさまにお世話に なりました。また、放射性物質の取り扱い、 線の測定では青 山学院大学理工学部アイソトープ実験室を利用させていただき ました。PGA の中性子照射、即発 線測定は日本原子力機構 原子力科学研究所 3 号炉ガイドビーム施設を利用させていただ きました。多くの方の支援に厚く御礼申し上げます。

引用文献

- 「荒川の石」編集委員会 (1999) 地学ハンドブック11「川原の 石のしらべ方 荒川の石」. 地学団体研究会, 66p.
- Asahara, Y., Ishiguro, H., Tanaka, T., Yamamoto, K., Mimura, K., Minami, M. And Yoshida, H. (2006) Application of Sr isotopes to geochemical mapping and provenance analysis: The case of Aichi Prefecture, central Japan. Applied Geochemistry, 21, 419-436.
- Breward, N. (2007) Arsenic and presumed resistate trace element geochemistry of the Lincolnshire (UK) sedimentary ironstones, as revealed by a regional geochemical survey using soil, water and stream sediment sampling. *Applied Geochemistry*, 22, 1970-1993.
- Darnley, A. G., Bjorklund, A., Bolviken, B., Gustavsson, N., Kovan, P. V., Plant, J., A., Steenfelt, A., Tauchid, M., and Xuejing, X. (1995) A global geochemical database for environmental and resource management, 19, UNESCO Publishing, Paris.
- 海老原充 (2005) 現代放射化学. 化学同人, 224p.
- Fordyce, F. M., Brown, S. E., Ander, E. L., Rawlins, B. G.,
 O'Donnell, K. E., Lister, T. R., Breward, N. and Johnson,
 C. C. (2005) GSUE: urban geochemical mapping in Great
 Britain. *Geochemistry: Exploration, Environment, Analysis*,
 5, 325-336.
- 福岡孝昭 (1993) 機器中性子放射化分析法 (INAA), 第四紀学会編「第四紀試料分析法 2」.東京大学出版会, 199 217.
- 福岡孝昭・栗下勝臣・小林町恵・浦野日峰・新藤智子・杉内由 佳・福士裕輔・加藤直子・楠野葉瑠香・越田千博・杉恵理子・ 小暮岳実(2005) 荒川上流中津川・神流川流域の地球化学図 の作成.立正大学文部科学省学術研究高度化推進事業オープ ンリサーチセンター(ORC) 整備事業平成16年度事業報告 書,128-135.
- 福岡孝昭・新藤智子・杉内由佳・草野未緒・宮下香織・越田千 博・杉恵理子・加藤直子・楠野葉瑠香・星有哉・関根友美・

福士裕輔・栗下勝臣・小暮岳実・伊藤靖浩・井上素子 (2006) 荒川上流中津川・神流川・河原沢川流域の地球化学 図. 立正大学文部科学省学術研究高度化推進事業オープンリ サーチセンター (ORC) 整備事業平成17年度事業報告書, 207-214.

- 福岡孝昭・新藤智子・楠野葉瑠香・町田尚久・王丹妮・星有哉・ 関根友美・東千亜希・永川由紀・宇野友則・高草木愛・杉内 由佳・小暮岳実・伊藤靖浩・石本光憲 (2007) 荒川上流河原 沢川・赤平川流域の地球化学図.立正大学文部科学省学術研 究高度化推進事業オープンリサーチセンター (ORC) 整備 事業平成18年度事業報告書, 166 - 175.
- 福岡孝昭・新藤智子・嶋田有里奈・関美乃・三浦亜由美・楠野 葉瑠香・宇野友則・高草木愛・東千亜希・永川由紀・田澤雄 二・小暮岳実・石本光憲(2008) 荒川上流薄川流域の地球化 学図. 立正大学文部科学省学術研究高度化推進事業オープン リサーチセンター(ORC) 整備事業平成19年度事業報告書, 151-160.
- 古川路明 (1994) 現代化学講座15 放射化学. 朝倉書店, 221p.
- 古川直道・袖原雅樹・伊藤裕之・高本のぞみ・袖原美恵 (2004) 河川堆積物の化学組成の季節変動 室見川および祓 川の例 . 福岡大学理学集報, 34, 27 - 44.
- 今井登・寺島滋・太田充恒・御子柴(氏家) 真澄・岡井貴司・ 立花好子・富樫茂子・松久幸敬・金井豊・上岡晃・谷口政碩 (2004) 日本の地球化学図. 産業技術総合研究所地質調査総 合センター, 209p.
- Imai, N., Terashima, S., Itoh, S. and Ando, A. (1995) 1994 compilation values for GSJ reference samples, 'Igneous rock series'. Geochemical Journal, 29, 91-95.
- 稲吉正実 (2005) 地球科学図作成プログラム.名古屋大学博物 館報告, 21, 51 - 56.
- 伊藤裕之・袖原雅樹・石原与四郎・古川直道 (2007) 福岡県西 部,室見川および那珂川流域の地球化学図. 福岡大学理学集 報, 37, 37 - 56.
- 伊藤泰男・海老原充・松尾基之 (2004) 放射化分析ハンドブッ ク 確度の高い多元素同時微量分析への実践 . 日本アイソ トープ協会, 133p.
- Johnson, C. C., Brown, S. E. and Lister, T. R. (2003) G-BASE Field Procedures Manual version 1.1. Initernal Report, IR/03/096N. British Geological Survey, Keyworth, Nottingham.
- Johnson, C. C., Breward, N., Ander E. L., and Ault, L. (2005) G-BASE: baseline geochemical mapping of Great Britain and Northern Ireland. *Geochemistry: Exploration, Environment, Analysis*, 5, 347-357.
- 上岡晃・伊藤司郎・田中剛・今井登 (1990) 地球化学図 元素 の地表分布とその解析, 地学雑誌, 99, 555 - 569.
- Knoll, G. (1991) 放射線計測ハンドブック. 木村逸郎・阪井 英次訳,日刊工業出版プロダクション, 814p.
- 小林町恵 (2001) 河川体積物試料の蛍光 X 線分析法の確立 地 球化学図主成分元素分析 ,立正大学地球環境科学部平成14

年度卒業論文.

- Montaser, A. (2000) 誘導結合プラズマ質量分析法. 久保田 正明監訳, 化学工業日報社, 942p.
- Plant, J. A., Klaver, G., Locutura, J., Salminen, R., Vrana, K., Fordyce, F. M. (1997) The Forum of European Geological Surveys Geochemistry Task Group: geochemical inoventry. *Journal of Geochemical Exploration*, 59, 123-146.
- 佐野貴司・福岡孝昭・長谷中利昭・米沢仲四郎・松江秀明・澤 幡浩之(1998)即発 線による火山岩中ホウ素の分析 ケイ 素を用いた内部標準法 , *Radioisotopes*, 47, 735 - 744.
- 佐野貴司 (2002) 蛍光 X 線分析装置を用いた火成岩中の主成分 および微量成分の定量. 富士常葉大学紀要, 2,43-59.
- 新藤智子・福岡孝昭・青木かおり・石本光憲・立正大学地球環 境科学部宇宙地球化学研究室(2008)高濃度 Mg, Cr 地点 の発見と Pb 人為汚染の可能性 荒川上流薄川流域の地球化 学図 . 2008年度日本地球化学会第55回年会講演要旨集, 211.
- 新藤智子・杉内由佳・嶋田有里奈・福岡孝昭 (2009) レーザー アプレーション誘導結合プラズマ質量分析 (LA-ICP-MS) 法によるガラスビード試料の定量分析.地球環境研究,11, 229-240.

高本のぞみ・袖原雅樹・古川直道 (2005) 福岡県東部,今川・ 祓川流域の元素濃度分布.福岡大学理学集報,35,41-66.

- 田中剛・川邊岩夫・山本鋼志・岩森光・安原靖大・三村耕一・ 浅原良浩・伊藤貴盛・米澤千夏・ドラグシャヌ クリスチャ ン・神田聡・清水乙彦・林正人・三浦典子・青木浩・太田充 恒・戸上薫・鳥海貴弘・松村陽子・榊原智康・谷水雅治・水 谷嘉一・宮永直澄・村山正樹・大林扶美子(1995)愛知県瀬 戸市周辺における河川堆積物中の元素分布と地圏環境評価の 試み.地球化学, 29, 113 - 125.
- 山本鋼志・田中剛・川邊岩夫・岩森光・平原靖大・浅原良浩・ 金奎漢・Chris Richadson・伊藤貴盛・Cristian Dragusanu・ 三浦典子・青木浩・太田充恒・榊原智康・谷水雅治・水谷嘉 ー・宮永直澄・村山正樹・仙田量子・高柳幸央・井上裕介・ 川崎啓介・高木真理・根布悟志・稲吉正実(1998)愛知県豊 田市北東部の領家花崗岩地域の地球化学図.地質学雑誌, 104, 688 - 704.
- 米沢仲四郎 (2002) 原子炉中性子による即発ガンマ線分析,分 析化学,51,61-96
- 吉田秀人・高橋奈津子 (1997) 北海道日高帯, 幌満マントルダ イアピル内での全岩主化学組成と微量成分組成の挙動. 岩鉱, 92, 391 - 409.

The Future Prospect for the Geochemical Mapping Projects and Manual of a Stream Sediment Geochemical Survey

AOKI Kaori^{*}, SHINDO Tomoko^{*}, KUSUNO Haruka^{*}, FUKUOKA Takaaki^{*} ^{*}Graduate School of Geo-environmental Science, Rissho University

Keywords: geochemical map, stream sediment, Ara river