NOAA 衛星画像を用いた関東地方における 明け方の地表面温度の特徴

白木洋平*

キーワード:NOAA/AVHRR、リモートセンシング、地表面温度、斜面温暖帯

1. はじめに

戦後から始まった高度経済成長期を経て著しく発展し た関東圏では、多くの人間が流入しライフラインの整備 に伴う地表面構造の改変が行われてきたが、同時に熱環 境の悪化、いわゆるヒートアイランド現象を招いてきた。 ここでヒートアイランド現象とは、都市の気温が周辺と 比べて高くなる現象をいい、主に人間活動が要因となり 発生している(たとえば、Chandler 1967, Oke 1979)。 このヒートアイランド現象は、冬季早朝の晴天弱風日に 最も良く現れることが知られているが、一方夏季におい ても日最低気温が25度以下にならない日、いわゆる熱帯 夜の日数増加も大きな問題となっており、これまでも様々 な研究がなされている(たとえば、藤部 1998, 安藤ほ か 2003)。

このヒートアイランド現象を把握するために、これま で様々な観測的研究が行われてきた。ここで観測方法を 大別すると、移動観測、定点観測の利用、衛星画像の利 用などが挙げられる。移動観測は、一般的に自動車など に温度計を取りつけて対象地域を周回することで気温分 布図を作成するものであり、たとえば武市 (2002) は、 高知県南国市のヒートアイランドを対象として統計解析 を行い、市街地周辺域は地理的要因が市街地中心部では 人為的要因が影響していることを明らかにしている。ま た、定点観測の利用では代表的なシステムとして地域気 象観測システム (Automated Meteorological Data Acquisition System; 以下、AMeDAS) がある。たとえ ば藤部 (1993) は、 関東平野において12年間の AMeDAS 資料を用い、春・夏季晴天日を対象に風系別 の気温分布を調べ、ヒートアイランドを含めた気温分布 の特性や海風による冷気移流の影響などを示した。また、 近年東京都では都の広域気温分布を作成する際、 AMeDAS よりも首都圏環境温度・降雨観測システム

(Metropolitan Environmental Temperature and Rainfall Observation System; 以下 METROS) を用 いた解析例も多い。これは、METROS20および MET-ROS100と呼ばれる2種類の気象観測システムにより、 都区部を中心とした多数の地点において気温や風などの 多項目の気象要素について観測を行うものであり、 AMeDASよりも観測点が密であるという利点を持って いる。たとえば三上ら(2004)は、METROSから得ら れた平均気温に対する各地点の気温偏差分布の特性を風 系と関連付けて解析し、東京都区内の気温偏差分布が海 陸風循環と密接に関連していることを明らかにしている。

しかしながら、近年では同時期同時刻の観測データを 面的に取得することができる衛星画像の地表面温度デー タも多く利用されている(たとえば、近藤ほか1993, 原田・近藤2005)。たとえば近藤・開發(1995)は、都 心に集中する高層建築物や密集市街地の影が日中の輝度 温度上昇を遅らせるが、夜間の輝度温度分布と気温分布 には高い相関があることを指摘している。このような衛 星画像を用いた都市域の地表面温度分布の把握や要因解 析は、分解能の高いTerra/ASTERやLandsat MSS/-TM/ETM+などを用いて日中や夜間を対象とすること が多く、分解能は低いが観測幅が広いNOAA/AVHRR を用いて都市の地表面温度分布の把握や要因解析を行っ た研究は決して多くはない。

そこで、本研究では関東地方を研究対象地域とし(図 1)、NOAA/AVHRRより得られた輝度温度から関東 地方の地表面温度分布を推定するとともに、地表面温度 分布の形成に影響を与えている要因について考察を行う こととする。また、対象とする時間帯はヒートアイラン ド現象が明瞭に現れる冬季明け方と、比較対象として夏 季明け方とした。ここで、本研究における夏季は7月8 月、冬季は1月2月と定義したことを追記する。

立正大学地球環境科学部

図1.研究対象地域

- 2. 関東地方における夏季明け方と冬季明け方の 地表面温度分布
- 2.1 使用データ

夏季と冬季の明け方の地表面温度分布を求めるために、 千葉大学環境リモートセンシング研究センター (CEReS: http://www.cr.chiba-u.jp/) よりダウンロー ド可能な NOAA のプロダクトデータのうち NOAA14 (1997年 - 2001年)を用いた。NOAAは、アメリカ海洋 大気庁 (NOAA: National Oceanic and Atmospheric Administration) により運用されている気象観測衛星 である。軌道は真円に近い太陽同期極軌道であり、軌道 高度は870km および833km、軌道傾斜角は98.9度およ び98.7度、周期は101.4分である。NOAAに搭載されて いるセンサとして、AVHRR (Advanced Very High Resolution Radiometer) と TOVS (TIROS Operational Vertical Sounder) がある。ここで、AVHRR は、雲の分布、地表面の温度分布などの観測を目的とす るセンサであり、TOVS は、大気中の気温や湿度の鉛 直分布を求めるための多チャンネル分光計である。地上 分解能は、AVHRR の軌道直下で1.1km である。本研 究では、地表面温度の算出において AVHRR の熱赤外 データを使用した。

2.2 地表面温度への変換とコンポジット画像の作成 本研究における明け方の対応時間として、NOAA14 にて撮影がなされている午前3時から午前5時のデータ を使用した。また、使用したNOAA14/AVHRRのプ ロダクトデータには幾何補正が施されているが、視野角 が大きくなると幾何補正の精度が悪くなる。そこで、 AVHRRの視野角が40度以下のデータのみを使用する

表 1. 本研究で使用した NOAA14/AVHRR のシーン一覧 (time はグリニッジ標準時)

Year	1997	1998	1999	2000	2001
July (day_time)	18_17			10_18	4_20
				16_19	12_20
					13_20
					14_19
					23_19
August (day_time)			03_18	2_19	
			31_18	10_19	
				28_19	
				29_19	

Year	1997	1998	1999	2000	2001
Janualy (day_time)		24_18	04_18	27_18	01_19
			19_18	28_18	03_19
			22_18		05_19
			29_18		11_19
					17_20
					29_19
					30_19
February (day_time)			07_18	06_18	05_19
			15_18	11_19	16_19
			16_18	12_19	21_19
			25_18	23_18	22_19
				24_18	

ことで対応した。さらに、本研究では地表面温度の算出 を行うため、関東地方に雲が顕著にかかっているシーン を目視により除外した。以上の使用データ制限を行った 結果、夏季では14シーン、冬季では27シーンを取得する ことが出来た(表1)。

次に、得られた輝度値から地表面温度の算出を行うた めに、スプリットウィンドウ法 (split window method) を用いた (Price, 1984)。これは、AVHRR の Channel 4および Channel5の輝度温度差を利用して地表面温度 T(K)を算出する方法であり、次式によって表わされる。

T = Channel4 + 3.3 (Channel4 - Channel5) (1)

また、これによって得られる地表面温度は絶対温度(K) であるため、得られた値から (-273.15) を行い摂氏 ()とした。

得られた夏季明け方の地表面温度分布を図2に、冬季 明け方の地表面温度分布を図3に示す。これによると、 夏季明け方の高温域は東京都心部から関東南部の幹線沿 いに拡がっている様子が見て取れる。理由として、夜間 において地表面は放射冷却により冷却されるが、アスファ

図 2 . NOAA14/AVHRR から作成した夏季明け方の 地表面温度分布図

図 3. NOAA14/AVHRR から作成した冬季明け方の 地表面温度分布図

ルトやコンクリートといった熱容量の大きな構成物質が 多くを占めている地域では、日中に吸収した熱を夜間に ゆっくりと放出していること、さらに最も高温である東 京都心部においては高層建築物や密集市街地の集中によ り天空率が減少(放射冷却の減少)していることなどが 考えられる。

一方、冬季では夏季のように幹線沿いに高温域は拡がっ ておらず東京都心部および千葉県南部、関東北部の山地 斜面などに高温域が拡がっている様子が見て取れる。幹 線沿いに拡がらない理由として、冬季明け方の放射冷却 の強さが夏季明け方より強いこと、郊外では都心のよう に放射冷却の減少を促す高層建築物や密集市街地が集中 していないことなどが考えられる。また、千葉県南部、 関東地方北部といった山地斜面上に形成されている帯状 の高温域は都市の影響ではなく、近藤ほか(1992)でも 指摘されているように斜面温暖帯を捉えているものと考 えられる。

3. 地表面温度分布の形成に影響を与えている 要因の評価方法

本研究では、図2および図3で示した関東地方の地表 面温度分布から、都市域の分布が夏季明け方の地表面温 度分布を、都市域の分布と標高(斜面温暖帯)が冬季明 け方の地表面温度分布を形成している大きな要因である と推測し、それぞれについて評価を行うこととした。以 下にその評価方法について示す。

3.1 都市域の分布と地表面温度の関係評価方法

都市域の分布と地表面温度の関係を知るためには、本 来詳細な都市形態と地表面温度の関係を評価することが 重要となってくる。しかしながら、本研究対象地域のよ うに広域な都市形態を詳細に把握することは極めて困難 である。そこで本研究では、まず国土数値情報の1/10 細分区画土地利用データから建設用地の抽出を行った。 次に5km×5kmの格子を作成し、格子内の建設用地 のピクセル数と平均地表面温度の関係を評価することで 都市域と地表面温度の関係を考察することとした。ここ で、国土数値情報の1/10細分区画土地利用データは1976 年、1987年、1991年、1997年、2006年に作成されている が、本研究では1997年のデータを使用している。図4に 5km×5km格子内の建設用地のピクセル数の分布を 示す。

図4.5km x 5 km 格子内の建設用地のピクセル数の 分布図

図 5 . 5 km × 5 km 格子内の平均標高分布図

3.2 標高と地表面温度の関係評価方法

標高と地表面温度の関係を知るために、本研究では米 国地質調査所(USGS:http://www.usgs.gov/)より ダウンロード可能なGTOPO30を用いることとした。こ こで、GTOPO30とは全球を水平方向30秒(約1km) 間隔の格子でモデル化されたDEMデータである。これ から上述したように5km×5kmの格子を作成し、格 子内の平均標高と平均地表面温度の関係を考察すること とした。図5に5km×5km格子内の平均標高分布を 示す。

4.考察

図4に示した5km×5km格子内の建設用地のピク セル数の分布を見ると、東京都内に建設用地が密集して おり、また幹線に沿って関東北部へ広がっていく様子が 見て取れる。また、図5に示したGTOPO30より作成し た5km×5km格子内の平均標高分布を見ると、北関 東の山地や千葉県南部の丘陵地などが明確に表現されて いる。

ここで、図6に夏季の5km×5km格子内の建設用 地のピクセル数と平均地表面温度の関係を示す。これに よると建設用地のピクセル数と平均地表面温度の間には、 地表面温度が上昇するにつれて建設用地のピクセル数が 急激に増加するという関係を見ることが出来る。また、 標高の低い地域ほど建設用地のピクセル数が多い様子も 見て取れる。しかしながら、図7に示した冬季の5km ×5km格子内の建設用地のピクセル数と平均地表面温 度の関係を見ると、夏季と同様に地表面温度が上昇する につれて建設用地のピクセル数が増加するという傾向を 見ることが出来るが、図7の(A)に示す通り建物用地のピ クセル数が少なく標高の高い地域でも地表面温度が高く なる様子も見て取れる。ここで、図8に(A)に含まれる地 域のうち、標高が150m以上かつ地表面温度が-5度以 上の地域を示す。これによると、前述した斜面温暖帯の 地域(図3)と概ね一致することがわかる。このことか ら、夏季明け方には建設用地が地表面温度分布の形成に 影響を与えているが、冬季明け方においては建設用地の 分布のみならず、一部地域の山地斜面では斜面温暖帯が 形成されているため、夏季明け方と冬季明け方では異なっ た地表面温度分布を形成していることが示唆される。

図 6. 夏季明け方における 5 km × 5 km 格子内の 建設用地のピクセル数と地表面温度の関係

図 7. 冬季明け方における 5 km × 5 km 格子内の 建設用地のピクセル数と地表面温度の関係

図 8. (A)に含まれる地域の分布図

5.まとめ

本研究では、NOAA14/AVHRRを用いて関東地方の 夏季と冬季の明け方に形成された地表面温度分布の違い について考察を行うとともに、建設用地の分布および標 高との関係についても併せて評価・考察を行った。その 結果、以下のことが明らかとなった。

夏季明け方は東京都心部を中心とした関東南部の幹 線沿いに高温域が広がっていたが、冬季では夏季とは 異なり東京都心部および千葉県南部、関東地方北部と いった山地斜面に高温域が広がっていた。

夏季明け方の都市域と地表面温度の関係を知るため に5km×5kmの格子を作成し、格子内の建設用地 のピクセル数と平均地表面温度の関係の評価を行った。 その結果、建設用地のピクセル数と地表面温度の間に は地表面温度が上昇するにつれて建設用地のピクセル 数が急激に増加するという関係を見ることが出来た。 また、標高の低い地域ほど建物用地のピクセル数が多 くなる様子も見て取れた。一方冬季では、夏季と同様 に地表面温度が上昇するにつれて建設用地のピクセル 数が増加するという傾向を見ることが出来たが、建物 用地のピクセル数が少なく標高の高い地域でも地表面 温度が高くなる様子も見て取れた。これは、夏季明け 方とは異なり、冬季明け方では一部地域の山地斜面で 斜面温暖帯が形成されているためであることが示唆さ れた。

今後の課題として、本研究では地表面温度のコンポジット画像を作成するために1997年から2001年までの

NOAA14/AVHRR を用いたが、雲量などの問題により 多くのシーンを得ることが出来なかった。そのため、今 後は観測時間が NOAA14に近い NOAA12の AVHRR データも使用するとともに、2002年以降のデータについ ても随時追加していくことで信頼性を向上させる予定で ある。また、本研究では詳細な地表面構造と地表面温度 の関係についての評価は行っていない。今後は詳細な地 表面構造のデータを取得し、明け方の地表面温度の関係 について更に評価を行っていく必要がある。

参考文献

- 安藤晴夫・塩田勉・森島済・小島茂喜・石井康一郎・泉岳樹・ 三上岳彦,2003:2002年夏季における都区部の気温分布の特 徴について、東京都環境科学研究所年報2003,81-87.
- 近藤昭彦・菅野洋光・三上岳彦, 1992: ランドサット TM 夜 間熱映像と DTM の重ね合わせによる斜面温暖帯の解析,日 本リモートセンシング学会誌,12,169-178.
- 近藤昭彦・栗原昭子・三上岳彦1993: ランドサットデータによ る関東平野の諸都市のヒートアイランド強度の解析,日本リ モートセンシング学会誌,13,120-130.
- 近藤昭彦・開發一郎,1995:広島市市街地におけるランドサッ トデータによる輝度温度と気温および都市キャノピー層の構 造との対応関係,地学雑誌,104,225-238.
- 武市伸幸,2002:高知県南国市のヒートアイランドと形成要因, 天気,49,47-56.
- 原田一平・近藤昭彦,2005:TM/band6の熱赤外画像データと AMeDASの気温データを利用した東京大都
- 市圏の都市化とヒートアイランドの広域化の解析,地学雑誌, 114,705-723.
- 藤部文昭, 1993: 関東平野における春・夏季晴天日の気温分布 の日変化, 天気, 40, 759 - 767.
- 藤部文昭,1998:関東内陸域における猛暑日数増加の実態と都 市化の影響についての検討,天気,45,643-653.
- 三上岳彦・安藤晴夫・横山仁・山口隆子・石井康一郎・塩田勉・ 森島済・小島茂喜・泉岳彦,2004:東京都区内における夏期 ヒートアイランドの時空間変動,東京都環境科学研究所年報 2004,11-17.
- Chandler, T.J., 1967: Night-time temperature in relation to Leicester's urban form, Meteorol. Mag., 96, 244-250.
- Oke, T.R., 1979: Review of urban climatology, 1973-76. WMO Technical Note, 169, 100.
- Price, C. J., 1984: Land surface temperature measurement from the split window channels of the NOAA 7 Advanced Very High resolution Radiometer, J. Geosphys. Res., 89, 7231-7237.

Some Characteristics of Surface Temperature in Kanto Region before Daybreak Using NOAA Satellite Images

SHIRAKI Yohei*

*Faculty of Geo-environmental Science, Rissho University

Keywords: NOAA/AVHRR, remote sensing, surface temperature, thermal belt