東南極、西オングル島に分布する post-metamorphic graniteの岩石学的研究

川野良信*

キーワード:東南極、リュツォ・ホルム岩体、西オングル島、同位体組成、地球化学

I. はじめに

東南極プリンスオラフ海岸からリュツォ・ホルム湾 周辺に露出するリュツォ・ホルム岩体 (以下、LHC) は、カンブリア紀の年代を示す変成岩体である。岩体に は、東から西へ、角閃岩相からグラニュライト相へと連 続的に上昇する中圧型のプログレッシブ変成作用が認め られ (Hiroi et al. 1983)、その変成度はリュツォ・ホル ム湾奥のルンドボークスヘッタ付近で最高に達し、さら に西に向かうとやや下降することが明らかにされている (Motoyoshi et al, 1985)。この岩体を構成する変成岩類 については様々な手法を用いた多くの岩石学的研究が行 われ、その形成過程が論じられてきた。Shiraishi et al. (1994) は、年代・岩相・変成分帯・地質構造などの解 析によって、LHCが様々な時代の変成岩や深成岩から なる地塊の集合体であると指摘した。さらに、Shiraishi et al. (2008) はLHCに産する変成岩のSHRIMP U-Pb 年代とNdモデル年代を用いて、原生代末期からカンブ リア紀における東南極の地殻形成について論じており、 LHCは始生代や古生代の地塊が集合し、その変成作用 はゴンドワナ大陸形成の末期である520~550Maにピー クを迎えたと結論づけている。

このLHCには原生代最末期~古生代初期に活動した 花崗岩類が多数認められる(Nishi et al, 1999, 2002; 西ほか 2000;西・川野 2001; Ajishi et al, 2004;味 志・川野 2005; Kawano et al, 2005, 2006)。これら花 崗岩類は、LHCの変成作用以前もしくは変成作用と同 時に活動した花崗岩類(pre-もしくはsyn-metamorphic granite)と、変成作用後に活動した花崗岩類(postmetamorphic granite)に大別されている(味志・川野 2005)。前者は周辺の変成岩と同様の変形構造を示すも のが多く、基盤岩との接触部も不明瞭な場合が多い。そ れに対して後者は周囲の変成岩の構造を切り、明瞭な境 界をもって貫入する岩脈として産出している(Ajishi et 岩類(以下、pre-/syn-metamorphic granite)の全岩化 学分析値を報告し、それらの岩石学的特徴を明らかにし た。また、西・川野(2001)は、それら花崗岩類を構成 する造岩鉱物について化学分析を行い、特に東西オング ル島に産するpre-/syn-metamorphic graniteの形成条件 について議論している。さらに、Kawano et al. (2005) は東西オングル島に露出するそれら花崗岩類につい て、Sr、Nd同位体分析を行い、pre-/syn-metamorphic graniteがLHCの変成岩類と古い大陸地殻物質との反応 により生じたと結論づけた。一方、味志・川野(2005) はLHCに点在する変成作用後に活動した花崗岩類(以 下、post-metamorphic granite) について、岩石化学的 な検討を行い、それらの造構場を推定している。また、 Nishi et al. (2002) はLHCの漸移相帯に位置する奥岩の、 Ajishi et al. (2004) は角閃岩相帯に位置するかすみ岩の それぞれpost-metamorphic graniteについて、Sr、Nd同 位体組成と全岩アイソクロン年代を報告し、個々の花崗 岩類の起源物質について議論している。しかしながら、 LHCのグラニュライト相帯に産するpost-metamorphic graniteの岩石学的研究は未だ行われていない。

al, 2004)。西ほか (2000) はLHCの複数の地域に産す

る変成作用以前もしくは変成作用と同時に活動した花崗

本論では、LHCのグラニュライト相帯に位置する西 オングル島のpost-metamorphic graniteについて野外・ 鏡下観察、全岩主成分・微量成分分析、Sr、Nd同位体 分析を行い、その岩石学的特徴を明らかにし、変成相の 異なる地域に分布するpost-metamorphic graniteとの比 較検討を行う。

Ⅱ. 地質概説

リュツォ・ホルム岩体は主として花崗岩質岩脈を伴う 高変成度変成岩類から構成されている。このうちペグマ タイトやグラニュライト相変成岩に関しては、パンアフ リカン変動と同時期の年代を示す683~1131 MaのU-Pb、 Rb-Sr、K-Ar鉱物年代が報告されており、古生代初期の 花崗岩類の活動によって同位体年代が再平衡に達したと 考えられてきた(Shibata et al, 1985, 1986)。しかしな がら、白石(1996)やSiraishi et al.(1992, 1994)はリュ ツォ・ホルム岩体の様々な地域から得られたジルコン SHRIMP年代が、一例を除くと全て520~550Maに集中 することから、主要変成作用は520~550Maに起きたと 推定している。

調査地域である西オングル島は南緯69°00'~69°32'、 東経39°29'~39°36'に位置し、LHCのグラニュライト 相帯に位置している(図1)。本島は平坦な地域も多少 認められるが、全体的には起伏に富んでおり、氷河に よってできた浅い谷や多くの池が点在している。

本島の地質概略をIshikawa et al. (1994) に基づき以 下に述べる(図2)。輝石片麻岩は西オングル島に広く 露出しており、一般に中粒でグラノブラスッティック組 織を呈するが、局所的に明確な片理が発達し、細長い角 閃石や輝石の団粒を含んでいる。角閃石片麻岩は本地 域の中部および東部で見られ、輝石片麻岩あるいは塩

図1 東南極、リュツォ・ホルム湾における変成相区分 図とオングル諸島の概略図

リュツォ・ホルム岩体の変成分帯はHiroi et al. (1991) に基づく。

基性変成岩の中で調和的な薄い層として産出する。眼 球片麻岩は、ザクロ石黒雲母片麻岩と共に本地域中央 部に南北に伸びて分布している。pre-/syn-metamorphic graniteであるザクロ石黒雲母角閃石花崗岩(Kawano et al, 2005)は赤~桃色を呈する微斜長石を多く含み、本 地域の中部~北部にかけて層状に産出している。postmetamorphic graniteは、前述の片麻岩類の中に明瞭な 境界を伴う岩脈として随所に産する(図2)。

黒雲母を用いたRb-Sr鉱物年代として、ザクロ石片麻 岩から500±30Ma (Nicolaysen et al, 1961) と508Ma (Maegoya et al., 1968) が、カリ長石を用いたRb-Sr鉱 物年代としてザクロ石片麻岩から726Ma (Maegoya et al, 1968) がそれぞれ得られている。また、黒雲母のK-Ar 法を用いて、ザクロ石黒雲母角閃石花崗岩から399Ma、 角閃石片麻岩から485Ma、黒雲母片麻岩から560Maが それぞれもたらされている (矢内・植田 1974)。さらに、 ジルコンSHRIMP年代法を用いてザクロ石黒雲母片麻岩 から532±6Ma (Shiraishi et al, 1994; 2008) の値が得 られている。

Ⅲ.野外および鏡下観察

西オングル島の北東域には被貫入岩の片理面に非調和 的、一部調和的に多数のpost-metamorphic graniteが岩 脈として分布している(図3)。非調和に貫入する岩脈 の多くは北西-南東方向を示すものが多いが、本島東側 に北東-南西方向に貫入する岩脈もある。これらの岩脈 は50cmから2mほどの厚みをもち、白~赤色を呈して いる。全体的に粗粒である場合が多いが、被貫入岩と接 触する部分では細粒、岩脈中央部分では相対的に粗粒を

図2 西オングル島の地質概略図 Ishikawa et al. (1994) を簡略。

図3 Post-metamorphic graniteの野外での産状

- A:輝石片麻岩中に貫入するpost-metamorphic granite
- B:輝石片麻岩の構造を切るpost-metamorphic granite C:変成岩の構造を切って伸びる岩脈状
- post-metamorphic granite D:輝石片麻岩の構造に対して直交する
- post-metamorphic granite

呈する岩脈もある。輝石片麻岩に調和的に貫入する岩脈 は、接触変成作用によって輝石片麻岩を角閃石片麻岩に 変化させている(図3A:Hiroi and Onuki, 1985)。ま た、多くの岩脈は周囲の片麻岩の片理面を切って産し (図3B)、数百mにわたって延長するものもある(図3 C)。片理面とほぼ直交方向に貫入する岩脈は(図3D)、 オングル諸島の変成・変形運動の後に活動した事を示し ている。

これらpost-metamorphic graniteを構成する主要造岩 鉱物は石英、カリ長石、斜長石、黒雲母である(図4)。 石英は長径0.3~3.0mmで他形を示し、石英とカリ長石 からなる微文晶連晶が認められる(図4A、B)。カリ 長石は他形を呈したマイクロクリンで、長径0.4~4.5mm と10mmに達するものが多い。玉状や細紐状のパーサイ ト構造が見られるものがある(図4C、D)。斜長石は 他形を呈し、長辺0.5~3.2mmが多い。アンチ・パーサ イト構造をもつものがある。黒雲母は長径0.1~1.0mm で他形~自形を呈し、ジルコンやアパタイトを伴う場合 が多い。副成分鉱物として、白雲母、ジルコン、不透明 鉱物があり、アパタイト、方解石が認められる。

これら岩脈の構成鉱物量を比較するためにモード分 析を行った。モード分析は同一試料から3枚の薄片を 作成し、それぞれの薄片を偏光顕微鏡下で1000ポイン トカウントし、その平均を石英-カリ長石-斜長石三角 図に示した(図5)。比較のために、かすみ岩と奥岩に 産するpost-metamorphic granite(西ほか 2000; Ajishi et al, 2004)の値も示した。いずれのpost-metamorphic

- 図4 Post-metamorphic graniteの偏光顕微鏡写真
- A: Post-metamorphic granite (020213) の鏡下写真 (オープンニコル)
- B:同鏡下写真(クロスニコル)
- C: Post-metamorphic granite (020405) の鏡下写真 (オープンニコル)
- D:同鏡下写真(クロスニコル)
- Qz、石英; Pl、斜長石; Kf、カリ長石; Bt、黒雲母

graniteもカリ長石の増加に伴い、石英の量が減少する 変化傾向が認められ、西オングル島の1試料(020402) を除けば、3地域の組成領域はほぼ重複する。かすみ岩 のpost-metamorphic graniteが最も組成幅が狭く、花崗 岩とアルカリ長石花崗岩から構成される。奥岩の花崗岩 類は花崗閃緑岩、花崗岩、アルカリ長石花崗岩の領域に 点示され、やや石英に富む特徴を示している。西オング ル島のものは最も組成範囲が広く、花崗閃緑岩、花崗 岩、閃長岩の領域に拡がって点示される。後述する化学 組成で高いTiO₂、Fe₂O₃、MgO、CaO量を示し、他の岩

奥岩とかうみ岩のデータはそれそれ四ほか(2000)る Ajishi et al. (2004)から引用。

脈と異なる性格を示す020403と020310は最も石英に富み、 カリ長石に乏しい領域に点示される。また、Cr含有量 が極めて多い020214は三角図の中央からややカリ長石に 富む領域に変位し、西オングル島のpost-metamorphic graniteの占める領域の中央部分に点示される。

Ⅳ. 全岩化学分析

1. 分析方法および試料作成方法

西オングル島のpost-metamorphic granite10試料に ついて、全岩化学主成分および微量成分分析を実施し た。岩石は、可能な限り新鮮な部分を岩石カッターで切 り出した後、鉄乳鉢で粉砕し、メノウ製のボールミルで 細粉化を行い、最終的にメノウ乳鉢で極粉化した。粉 末試料は900℃で1時間以上の強熱処理を行い、融剤 (四ホウ酸リチウム)と希釈率1:2で混合し、ガラス ビードを作成した。主成分、微量成分元素分析は、川野 (2010)に基づき立正大学地球環境科学部環境システム 学科設置の蛍光X線分析装置(XRF;リガク社製ZSX Primus II)を用いて行った。ただし、分析条件を改善 し、理論マトリックス補正計算はde Jonghモデルを用い、 Loss on ignition (L.O.I.)を含む補正計算(山田 2010) を加えている。測定した元素は、Si、Ti、Al、Fe、Mn、 Mg、Ca、Na、K、Pの主成分に、Ba、Cr、Cu、Nb、 Ni、Rb、Sr、V、Y、Zn、Zrの微量成分を加えた合計 21元素である。なお、2 試料のMnO、4 試料の P_2O_5 と Ni、9 試料のCuとV、5 試料のNbについては含有量が 僅かであり有意な値を得ることはできなかった。分析結 果を表1に示す。

2. 分析結果

図 6 にSiO₂に対する代表的な主成分元素とA.S.I. (aluminum saturation index)の関係を示す。また、こ の図には既報のpost-metamorphic granite(西ほか 2000; Ajishi et al, 2004)の値も合わせて示した。西オ ングル島のpost-metamorphic graniteは、SiO₂の増加に 伴い、TiO₂、Fe₂O₃、MgOが増加し、Al₂O₃が減少する 変化傾向を示す。CaO、Na₂O、K₂O、P₂O₅については 明瞭な変化傾向は認められない。ただし、TiO₂、Fe₂O₃、 MgOの増加は、これらの元素に富む020403によって強 調されており、この1試料を除けばごく僅かな増加でし かない。CaOはこの020403に加えて020310の含有量が多 いため、分散しているがこれら2試料を除けば、SiO₂の 増加に伴い減少する傾向を示す。A.S.I.はすべての試料 においてパーアルミナスな性質を示している。

かすみ岩や奥岩のpost-metamorphic graniteと比較

Sample	020201	020211	20212	20213	020214	020310	020402	020403	020405	020406
SiO ₂ (wt%)	67.48	71.86	73.99	72.48	75.11	75.02	68.43	75.65	73.28	72.21
TiO_2	0.12	0.16	0.08	0.08	0.07	0.14	0.04	0.43	0.21	0.07
Al_2O_3	18.56	15.48	14.94	14.65	14.29	15.25	18.83	12.78	14.37	15.44
Fe_2O_3	1.00	1.19	0.72	1.33	0.65	1.20	0.32	2.46	1.38	0.43
MnO	0.01	0.01	0.01	0.01	0.01	0.01	n.d.	0.01	0.01	n.d.
MgO	0.12	0.33	0.11	0.07	0.18	0.36	0.21	0.80	0.39	0.23
CaO	2.50	0.67	0.82	0.91	0.60	1.91	2.33	2.18	0.36	0.54
Na_2O	5.08	2.71	3.40	3.08	3.25	4.63	4.71	2.95	2.35	2.72
K_2O	3.90	8.44	6.26	6.30	6.82	3.38	5.77	3.05	8.69	8.83
P_2O_5	0.07	0.02	0.03	0.04	n.d.	n.d.	n.d.	n.d.	0.07	0.01
Total	98.84	100.86	100.36	98.96	100.99	101.90	100.62	100.31	101.10	100.49
Ba (ppm)	384	365	402	393	239	1818	1870	723	986	572
Cr	6	8	5	1	42	7	7	7	3	4
Cu	n.d.	n.d.	n.d.	5	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Nb	n.d.	n.d.	n.d.	n.d.	n.d.	6.1	2.6	5.4	7.3	4.7
Ni	3	4	1	2	n.d.	n.d.	n.d.	n.d.	5	6
Rb	160	361	248	230	261	113	123	91	279	340
Sr	266	162	195	180	140	169	767	294	227	171
V	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	30	n.d.	n.d.
Y	17	48	6	7	30	15	17	22	39	38
Zn	21	25	11	16	9	11	4	16	18	2
Zr	124	90	57	181	53	39	34	161	55	44
A.S.I.	1.085	1.046	1.078	1.082	1.034	1.034	1.034	1.055	1.032	1.029

表1 西オングル島産Post-metamorphic graniteの全岩化学分析値

n.d., not determined ; A.S.I., aluminum saturation index

した場合、西オングル島のpost-metamorphic granite は、かすみ岩のそれらよりもTiO₂、Fe₂O₃、P₂O₅にやや 富み、Al₂O₃、MgO、CaO、Na₂O、K₂Oは同程度の濃度 を示す。SiO₂が72wt%以下では、西オングル島の方が 高A.S.I.を示すが、72wt%以上では同程度のA.S.I.を有し ている。奥岩のそれらと比較すると、MgO、K₂Oに富 み、CaO、Na₂O、P₂O₅に乏しく、TiO₂、Al₂O₃、Fe₂O₃ は同程度の濃度を示している。また、西オングル島の post-metamorphic graniteが奥岩のそれよりもやや高い A.S.I.を示している。

図7にSiO₂に対する代表的な微量元素成分の関係を示 す。この図でも他地域のpost-metamorphic granite(西 ほか 2000: Ajishi et al, 2004)の値を示した。ただし、 かすみ岩の花崗岩類については全試料のCrとNi、1 試 料のNbは分析値が得られておらず(Ajishi et al, 2004)、 奥岩についても5 試料のNbと1 試料のCrの測定値は報 告されていない(西ほか 2000)。西オングル島のpostmetamorphic graniteは、SiO₂の増減に伴う各微量元素

図6 Post-metamorphic graniteのSiO2に対する主成分組成変化図

奥岩とかすみ岩のデータはそれぞれ西ほか(2000)とAjishi et al. (2004)から引用。 A.S.I., aluminum saturation index

の明瞭な変化傾向は認められない。ただし、Crに関しては020214に濃集する特徴がみられる。

かすみ岩や奥岩のpost-metamorphic graniteと比較し た場合、西オングル島のpost-metamorphic graniteは、 かすみ岩のそれらよりもRb、Yにやや富み、Nb、Srに 乏しい傾向があり、奥岩のそれらよりもRbに富み、Ni やSrに乏しい性質を示している。特に試料数は少ない もののNiは組成差が明瞭である。また、Yはかすみ岩や 奥岩の岩石に比べて、西オングル島の岩石は組成幅が 大きい特徴が認められる。3地域のpost-metamorphic granite共通の特徴としてはBaに極めて富むという点で あり、特に奥岩の試料では4000ppmを越え、西オングル 島の試料でも2000ppm程含まれている。

V. Sr、Nd同位体組成

全岩化学分析を行った10試料のうち、8 試料につい て⁸⁷Sr/⁸⁶Sr同位体比、さらにそのうち4試料について ¹⁴³Nd/¹⁴⁴Nd同位体比の分析およびSm、Ndの定量の測 定を行った。同位体比測定用試料の抽出は川野ほか (1999) に従い佐賀大学文化教育学部の岩石分析室で 行った。同位体比は新潟大学自然科学研究科のMAT261 及びMAT262質量分析計を用いて測定した。測定方法 はMiyazaki and Shuto (1998) に従った。Sm、Ndの定 量は、¹⁴⁵Nd-¹⁴⁹Smミックススパイクを用いた同位体希釈 法により測定した。測定結果を表2に示す。アイソクロ ン年代および初生値は、λ=1.42×10⁻¹¹/yの⁸⁷Rbの崩壊 定数を用いてYork(1966)の方法により計算した。計 算には川野(1994)のプログラムを使用した。その際 ⁸⁷Rb/⁸⁶Sr同位体比には5%の再現性を見込み、⁸⁷Sr/⁸⁶Sr 同位体比には0.015%の再現性があるものとして計算 した。なお、本稿で使用するBulk Earthの現在値は ${}^{87}\text{Sr}/{}^{86}\text{Sr} = 0.7045$, ${}^{87}\text{Rb}/{}^{86}\text{Sr} = 0.0827$ (DePaolo, 1988),

¹⁴³Nd/¹⁴⁴Nd = 0.512638、¹⁴⁷Sm/¹⁴⁴Nd = 0.1966 (Goldstein et al, 1984) を、崩壊定数は⁸⁷Rbで1.42×10⁻¹¹/y、¹⁴⁷Sm で6.54×10⁻¹²/yをそれぞれ用いた (Steiger and Jäger, 1977; Lugmair and Marti, 1978)。

図8にアイソクロン図を示す。西オングル島のpostmetamorphic graniteは8 試料のSr同位体比を測定して いるが、前述のように020214はCrに極端に富み他の花 崗岩類と異なる性質を示し(図7)、020406は他の岩 脈と異なり北東-南西方向に貫入するものである(図 2)。020211、020212および020213はいずれも南北方向 に貫入する岩脈であり、これら3 試料がなすアイソクロ ン近傍に020405、020201と020310の3 試料が点示され る。よって、020214と020406の特異な2試料を除く6試 料を用いて、全岩アイソクロン年代を求めた。その結 果、0.71225±0.00107の初生値を伴う525±28Maが得ら れた。これらの値は誤差が大きいものの、532±6Maの ジルコンSHRIMP年代を示す周辺の片麻岩類(Shiraishi et al, 1994) よりも新しく、野外で観察される貫入関係 と調和的である。なお、4 試料のNd同位体比を測定し たが、それらは分散し、アイソクロンを構成しなかった ため図に表していない。

図9に ε Sr- ε Nd図を示す。この図には比較のために かすみ岩と奥岩のpost-metamorphic granite(Nishi et al., 2002; Ajishi et al, 2004)とオングル諸島の変成岩 類(Kawano et al, 2005)のデータも示した。それぞれ の花崗岩類や変成岩類の ε 値は、西オングル島で525Ma、 奥岩で485Ma、かすみ岩で492Maを用いてそれぞれ算出 した。オングル諸島の変成岩類はBulk Earth近くに点示 され、奥岩とかすみ岩の試料は比較的狭い領域に点示さ れる。それに対して、西オングル島の試料は高 ε Sr、低 ε Ndに変位した領域を占め、変成岩類や他地域のpostmetamorphic graniteとは異なる値を示している。

Sample	Rb (ppm)	Sr (ppm)	⁸⁷ Sr/ ⁸⁶ Sr	⁸⁷ Rb/ ⁸⁶ Sr	SrI (525Ma)	ε Sr (525Ma)	Sm (ppm)	Nd (ppm)	¹⁴³ Nd/ ¹⁴⁴ Nd	¹⁴⁷ Sm/ ¹⁴⁴ Nd	NdI (525Ma)	ε Nd (525Ma)
020201	160	266	0.72545	1.739	0.71243	121	9.357	67.793	0.512170	0.083	0.511883	- 1.53
020211	361	162	0.76180	6.497	0.71318	132	7.21	38.842	0.512188	0.112	0.511802	-3.12
020212	248	195	0.74065	3.688	0.71306	130						
020213	230	180	0.74000	3.700	0.71231	120						
020214	261	140	0.75613	5.397	0.71575	169	1.38	7.757	0.512233	0.108	0.511863	-1.92
020310	113	169	0.72710	1.950	0.71251	123						
020405	279	227	0.73821	3.568	0.71151	108	8.45	66.914	0.512168	0.076	0.511905	- 1.10
020406	340	171	0.75812	5.783	0.71485	156						

表2 西オングル島産Post-metamorphic graniteの同位体組成

奥岩とかすみ岩のデータはNishi et al. (2002) とAjishi et al. (2004) から、オングル諸島の変成岩類はKawano et al. (2005) からそれぞれ引用。

Ⅵ. 考察

1. 西オングル島post-metamorphic graniteの多様性

かすみ岩や奥岩のpost-metamorphic granite (Ajishi et al, 2004; Nishi et al, 2002) は連続する露頭で、比 較的狭い範囲から採取されてきたものであり、単一の マグマからもたらされたと考えられている。しかしな がら、図2に明らかなように、西オングル島のpostmetamorphic graniteは貫入方向が異なる複数の岩脈と して出現しており、それらすべてが単一のマグマを起源 としているとは考えがたい。図5の石英-斜長石-カリ 長石三角図では西オングル島の試料が最も分散しており、 花崗閃緑岩から閃長岩まで変化している。また、図6 のSiO₂-酸化物図をみると、TiO₂、Fe₂O₃、MgO、CaO、 Na₂Oなどで変化傾向から外れる試料(020403、020310) があり、特に020403は複数の元素において変動が著しく 異質な岩石と考えられる。図7においても、Crで大き く性格が異なる試料(020214)が認められるが、図6で 特異な性質を示す試料とは一致していない。さらに、こ れらの化学組成にみられる多様性を検討するために、図 10にRb-Rb/Sr図を示した。一般に、単一のマグマから

分化が進んでいった場合、Rbはマグマに濃集し、Srは 斜長石の分別と共に減少していくため、Rb-Rb/Sr図で は左下から右上に向かって滑らかに変化することが期待 される。図6や図7で特異な性質を示す試料は、いずれ も変化傾向から低Rb側に変位して点示される。これら の事実は西オングル島のpost-metamorphic graniteが複 数のマグマから形成されたものか、もしくは、単一マグ マであったとしても上部地殻物質との反応様式が多様化 し、化学的性質を変化させたものと推定される。ただし、 図8のアイソクロン図をみると、化学的性格の異なる試 料がアイソクロンから変位するのは僅かであるため、起 源の異なるマグマから各岩脈が形成されたと考えるより も、同源マグマと上部地殻物質との反応様式の差によっ てそれぞれのpost-metamorphic graniteを形成したと考 えるべきであろう。

2. 他地域のpost-metamorphic graniteとの対比

前述のように、LHCは角閃岩相帯、漸移帯、グラニュ ライト相帯の3帯に区分されており(図1)、かすみ岩 は角閃岩相帯、奥岩は漸移帯、そして西オングル島は グラニュライト相帯にそれぞれ位置している。すなわ ち、西オングル島のpost-metamorphic graniteが最も変 成度が高かった地域に出現し、かすみ岩のそれは最も変 成度が低かった地域に分布している。石英-斜長石-カ リ長石モード組成では、これら3地域の花崗岩類に明瞭 な差は認められず、それぞれが占める領域は重複してい る。化学組成では、西オングル島のpost-metamorphic graniteは、かすみ岩のそれらよりもTiO₂、Fe₂O₃、P₂O₅、 Rb、Yにやや富み、Nb、Srに乏しく、奥岩のものより もMgO、K₂O、Rbに富み、CaO、Na₂O、P₂O₅、NiやSr に乏しい特徴を示している(図6、7)。ただし、これ ら化学組成と変成度の違いに、相関は認められない。例

えば、RbやSrは、それぞれの花崗岩類で違いは認めら れるものの、Rbは西オングル島で最も富み、次いでか すみ岩、奥岩で最も乏しくなっている。逆にSrは西オン グル島で最も少なく、かすみ岩、奥岩の順に富んでい る。すなわち、本研究では変成度の高い西オングル島 のpost-metamorphic graniteから、奥岩のそれらを経て、 かすみ岩の花崗岩類に掛けて、系統的に減少もしくは増 加する元素を認めることができなかった。次にこれらの 花崗岩類の活動時期や同位体比初生値の関係(図11)を 検討する。西オングル島のpost-metamorphic graniteの 活動時期は525Maを示し(図8)、奥岩(485Ma、Nishi et al, 2002) やかすみ岩 (492Ma、Ajishi et al, 2004) の花崗岩類に比して、39~32myほど早く活動している。 また、西オングル島のpost-metamorphic graniteのSr 同位体比初生値は0.71151~0.71575の範囲で変化し、奥 岩(0.70586~0.70661、Nishi et al, 2002) やかすみ岩 (0.70523~0.70544、Ajishi et al, 2004) のそれらより も明らかに高い。さらに、それぞれの活動年代を用い て計算した花崗岩類のNd同位体初生値も、西オングル 島(0.511802~0.511905)で最も高く、奥岩(0.511659、 Nishi et al, 2002) やかすみ岩 (0.511706~0.511801、 Ajishi et al. 2004) では低い値を示している。これらの

るSrおよびNd同位体比初生値の変化図

奥岩とかすみ岩のデータはNishi et al. (2002) とAjishi et al. (2004) からそれぞれ引用。

年代値や同位体比の違いは、それぞれの花崗岩類を形成 したマグマの起源が異なっていたことを強く示唆してい る。特に西オングル島のpost-metamorphic graniteと奥 岩やかすみ岩のものとは大きな隔たりが認められ、1) 起源物質そのものが異なっていた、2)起源物質が同じ であっても反応した地殻物質が異なっていた、3)起源 物質や反応した地殻物質が同じであっても反応様式が大 きく異なっていた、等の可能性が考えられる。

3. 西オングル島post-metamorphic graniteの成因

Kawano et al. (2005) は東西オングル島に産するpre-/ syn-metamorphic graniteの岩石学的研究を行い、それ らの化学的特徴とSr、Nd同位体組成から、中性から苦 鉄質の変成岩類が部分溶融し、形成されたマグマと古い 大陸地殻物質との反応によって、pre-/syn-metamorphic graniteが形成されたと論じている。特に西オングル島 に産するpre-/syn-metamorphic graniteは、A.S.I. (0.99) ~1.12) やSrI (0.71344~0.77006) が高いことから、古 い大陸地殻物質との反応の割合が最も高かったと推定 されている (Kawano et al, 2005)。西オングル島の post-metamorphic graniteもパーアルミナスの性質を示 し、SrIは0.71151~0.71575と高く、pre-/svn-metamorphic graniteの範囲内に含まれている。NdIは0.511802~0.511905 を示し、pre-/syn-metamorphic graniteの値 (0.511772~ 0.511815、Kawano et al, 2005) と、一部重複するがや や高い値を示している。そこで、西オングル島のpre-/ syn-metamorphic granite & post-metamorphic granite の化学組成をMORBで規格化したスパイダーグラム で比較してみた (図12)。post-metamorphic graniteの P₂O₅やNbは定量できなかった試料もあるが、pre-/synmetamorphic graniteのパターンと類似している。た だし、Zr、TiO₂、Yなどは相対的にpost-metamorphic graniteで低い傾向がある。

以上述べてきたようにSr、Nd同位体比や化学組成の 類似性から、西オングル島のpost-metamorphic granite の成因にpre-/syn-metamorphic graniteが関与している 可能性が示唆される。すなわち、580Maに活動していた pre-/syn-metamorphic graniteがLHCの変成作用に伴い、 525Maに部分溶融してpost-metamorphic graniteを形成 した可能性、もしくは、pre-/syn-metamorphic granite の起源物質となった変成岩類や古い大陸地殻物質が 525Maに再び反応し、post-metamorphic graniteをもた らしたのかも知れない。

図12 Post-metamorphic graniteのスパイダーグラム Pre-/Syn-metamorphic graniteの領域はKawano et al. (2005)のデータに基づく。

Ⅶ. まとめ

東南極、リュツォ・ホルム湾の西オングル島に露出 するpost-metamorphic graniteについて、岩石学的な 検討を行った。かすみ岩や奥岩のpost-metamorphic graniteと比較すると全岩化学組成の変化傾向に違い が認められ、全岩アイソクロン年代値やSr、Nd同位 体比初生値にも大きな格差があることから、それぞれ が異なる起源を有すると推定された。また、西オング ル島のpost-metamorphic graniteは本島に産するpre-/ syn-metamorphic graniteとSr、Nd同位体比初生値の 値が部分的に一致し、全岩化学組成の変化も類似して いる。このことから、580Maに活動していたpre-/synmetamorphic graniteがLHCの変成作用に伴い、525Ma に部分溶融してpost-metamorphic graniteを形成したか、 pre-/syn-metamorphic graniteの起源物質となった変成 岩類や古い大陸地殻物質が525Maに再び反応し、postmetamorphic graniteをもたらした可能性が指摘される。

謝辞

本研究は佐賀大学教育学研究科に所属していた味志秀 昭氏の修士論文の一部を発展させたものである。味志秀 昭氏には薄片制作や各種分析に際してご尽力頂いた。ま た、本研究で用いた試料は、筆者が第44次日本南極地域 観測隊に参加した際に採取されたものである。第44次観 測隊員および南極観測船「しらせ」乗組員には露岩調査 に際してご支援賜った。化学分析に用いた蛍光X線分析 装置(ZSX Primus II)は立正大学地球環境科学部環境 システム学科に設置されているものである。環境システ ム学科関係者各位に日頃より保守・管理にご協力いただ いている。立正大学環境科学研究所の岩崎望所長には本 研究を公開する機会を与えていただいた。以上の方々に 心から厚くお礼申し上げる。

引用文献

- 味志秀昭・川野良信(2005):東南極リュッツォホルム岩体 に分布する花崗岩質岩脈. 佐賀大学文化教育学部研究論文 集,第9集,第2号,191-199.
- Ajishi, H., Kawano, Y., Kawakami, T. and Ikeda, T. (2004) : Geochronological study of post-metamorphic granite from Kasumi Rock, Lützow-Holm Complex, East Antarctica. Polar Geoscience, 17, 35-44.
- DePaolo, D. J. (1988) : Neodymium isotope geochemistry : An introduction. Springer-Verlag, New York, p.187.
- Goldstein, S. L., O'Nions, R.K. and Hamilton, P.J. (1984) : A Sm-Nd isotopic study of atmospheric dusts and particulates from major river system. *Earth Planetary Science Letters*, 70, 221-236.
- Hiroi, Y., Shiraishi, K., Nakai, Y., Kano, T. and Yoshihara, S. (1983) : Geology and petrology of Prince Olav Coast, East Antarctica. Antarctic Earth Science, ed. by R.L.Oliver et al. Canberra, Aust. Acad. Sci., 32-35.
- Hiroi, Y. and Onuki, H. (1985) : Hornblende gneisses from Syowa Station, East Antarctica. Men. Nalt Inst. Polar Res., Spec. Issue, 37, 63-81.
- Ishikawa, M., Shiraishi, K., Motoyoshi, Y., Tsuchiya, N., Shimura, T. and Yanai, K. (1994) : Explanatory text of geological map of Ongul Islands, Lützow-Holm Bay, Antarctica. Antarctic Geol. Map Ser., Sheet 36 (with explanatory text 3 p.). Tokyo, Natl Inst. Polar Res.
- 川野良信 (1994):パーソナルコンピュータを用いたRb-Sr, Sm-Ndアイソクロン計算プログラム. 情報地質, 5, 13-19.
- 川野良信(2010): 蛍光X線装置による珪酸塩岩石および堆 積物の定量化学分析. 地球環境研究, 12号, 85-97.
- 川野良信・西 奈保子・石坂岳士 (1999):岩石化学実験室 におけるSr・Nd同位体比試料の調整. 佐賀大学文化教育 学部研究論文集,第4集,第1号,139-146.
- Kawano, Y., Meno, A., Nishi, N. and Kagami, H. (2005) : Geochemistry of the pre/syn-metamorphic granite in the Ongul Islands, East Antarctica. Polar Geosci., 18, 114-129.
- Kawano, Y., Nishi, N. and Kagami, H. (2006) : Rb-Sr and Sm-Nd mineral isochron ages of a pegmatiteic gneisss from Oku-iwa Rock, Lützow-Holm Complex, East Antarctica. Polar Geosci., 19, 109-117.
- Lugmair, G. W. and Marti, K. (1978) : Lunar initial ¹⁴³Nd/¹⁴⁴Nd: differential evolution of the lunar crust and mantle. Earth Planet. Sci. Lett., 39, 349-357.
- Maegoya, T., Nohda, S. and Hayase, l. (1968) : Rb-Sr Dating of the Gneissic Rocks from the East Coast of Lützow-Holm Bay, Antarctica. Memoirs of the Faculty of Science, Kyoto University. Series of geology and mineralogy, 35

(2), 131-138.

- Miyazaki, T. and Shuto, K. (1998) : Sr and Nd isotope ratios of twelve GSJ rock reference samples. Geochem J, 32 : 345-350.
- Motoyoshi, Y., Matsubara, S., Sasaki, K. and Matumoto, Y. (1985) : Garnet-sillimanaite gneisses from the Lüzow-Holm Bay region, East Antarctica. Mem. Natl Inst. Polar Res.,Spec. Issue, 37, 82-94.
- Nicolaysen, L. O., A. J. Burger, T. Tatsumi and L. H. Ahrens (1961) : Age measurements on pegmatites and a basic charnockite lens occurring near Lützow-Holm Bay, Antarctica. Geochim. Cosmochim. Acta, 22, 94-98.
- 西 奈保子・宮園誠司・目野明弘・川野良信(2000):東南 極, リュツォ・ホルム岩体に産する花崗岩質岩の記載岩石 学. 佐賀大学文化教育学部研究論文集, 第5集, 第1号, 215-227.
- 西 奈保子・川野良信(2001):東南極, リュツォ・ホルム 岩体に産出する花崗岩類の鉱物化学組成. 佐賀大学文化教 育学部研究論文集, 第5集, 第2号, 169-178.
- Nishi, N., Kawano,Y. and Kagami,H. (1999) : Preliminary result for the Rb-Sr mineral isochron ages of granitic rocks from Cape Omega and Okuiwa Rock, Prince Olav Coast, East Antarctica. Polar Geoscience, 12, 157-165.
- Nishi, N., Kawano,Y. and Kagami,H. (2002) : Rb-Sr and Sm-Nd isotopic geochromology of the granitoid and hornblende biotite gneiss from Okuiwa Rock in the Lützow-Holm Complex, East Antarctica. Polar Geoscience, 15, 46-65.
- Shibata, K., Yanai,K and Shiraishi,K. (1985) : Rb-Sr mineral isochron ages of metamorphic rocks around Syowa Station and Yamato Mountains, East Antarctica. Mem. Nalt Inst. Polar Res., Spec. Issue, 37, 164-171.
- Shibata, K., Yanai,K. and Shiraishi,K. (1986) : Rb-Sr wholerock ages of metamorphic rocks from Eastern Queen

Maud Land, East Antarctica. Mem. Nalt Inst. Polar Res., Spec. Issue, 43, 133-148.

- Shiraishi, K. and Kagami,H. (1992) : Sm-Nd and Rb-Sr ages of metamorphic rocks from the Sør Rondane Mountains, East Antarctica. Recent Progress in Antarctic Earth Science, ed. by Y. Yoshida et al. Tokyo, Terra Sci. Publ., 29-35.
- Shiraisi, K., Ellis,D.J., Hiroi,Y. and Nakai,Y. (1994) : Cambrian orogenic belt in East Antarctica and Sri Lanka:Implications for Gondwana assembly. J. Geol., 102, 47-65.
- 白石和行(1996):南極から見たゴンドワナの形成.月刊地 球,第18集,第6号,404-409.
- Shiraishi, K., Dunkley, D. J., Hokada, T., Fanning, C M., Kagami, H. and Hamamoto, T. (2008) : Geochronological constraints on the Late Proterozoic to Cambrian crustal evolution of eastern Dronning Maud Land, East Antarctica: a synthesis of SHRIMP U-Pb age and Nd model age data. Satish-Kumar, M., Motoyoshi, Y., Osanai, Y., Hiroi, Y. and Shiraishi, K. (eds) Geodynamic evolution of East Antarctica: A Key to the East-West Gondwana connection. Geol. Soc. London, Special Publ., 308, 21-67.
- Steiger, R. H. and Jäger, E. (1977) : Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmo-chronology. Earth Planet. Sci. Lett., 36, 356-362.
- 山田康治郎(2010):鉱石・岩石分析等で有効なガラスビー ド法を用いた蛍光X線分析法.リガクジャーナル,41,24-32.
- 矢内桂三・植田良夫(1974):昭和基地付近岩石の絶対年代 とその意義. 南極資料, 48, 70-81.
- York, D. (1966) : Least-squares fitting of a straight line. Can. J. Physics, 44, 1079-1086.

Petrology of the post-metamorphic granite in the West Ongul Island, East Antarctica

KAWANO Yoshinobu*

* Faculty of Geo-environmental Science, Rissho University

Abstract:

Latest Proterozoic to Early Paleozoic post-metamorphic granite occurs in the West Ongul Island, East Antarctica. The post-metamorphic granite consists of granodiorite, granite, alkali feldspar granite and syenite. The Rb-Sr whole rock isochron age of 525 ± 28 Ma with an initial 87 Sr/ 86 Sr ratio of 0.71225 ± 0.00107 is obtained from the granite. This age is slightly older than those of Kasumi Rock (492Ma) and Oku-iwa Rock (485Ma), and initial ratio is higher than those of the areas. Furthermore, the post-metamorphic granite in West Ongul Island shows different geochemical features from those of the Kasumi Rock and Oku-iwa Rock. These facts suggest that these post-metamorphic granites have different origin each other.

On the other hand, initial Sr and Nd isotopic ratios of the post-metamorphic granite in West Ongul Island are harmonized to those of pre-/syn-metamorphic granite (580Ma) in the island. The geochemical features of both granites are also similar. Therefore, it is considered that the post-metamorphic granite in West Ongul Island was derived from the pre-/syn-metamorphic granite by partial melting, or was originated by mixing between magma derived from metamorphic rocks and old continental crust as same as the pre-/syn-metamorphic granite.

Key words: East Antarctica, Lützow-Holm Complex, West Ongul Island, isotope, geochemistry